156 research outputs found

    A dissymmetric [Gd2] coordination molecular dimer hosting six addressable spin qubits

    Get PDF
    Artificial magnetic molecules can host several spin qubits, which could then implement small-scale algorithms. In order to become of practical use, such molecular spin processors need to increase the available computational space and warrant universal operations. Here, we design, synthesize and fully characterize dissymetric molecular dimers hosting either one or two Gadolinium(III) ions. The strong sensitivity of Gadolinium magnetic anisotropy to its local coordination gives rise to different zero-field splittings at each metal site. As a result, the [LaGd] and [GdLu] complexes provide realizations of distinct spin qudits with eight unequally spaced levels. In the [Gd2] dimer, these properties are combined with a Gd-Gd magnetic interaction, sufficiently strong to lift all level degeneracies, yet sufficiently weak to keep all levels within an experimentally accessible energy window. The spin Hamiltonian of this dimer allows a complete set of operations to act as a 64-dimensional all-electron spin qudit, or, equivalently, as six addressable qubits. Electron paramagnetic resonance experiments show that resonant transitions between different spin states can be coherently controlled, with coherence times TM of the order of 1 µs limited by hyperfine interactions. Coordination complexes with embedded quantum functionalities are promising building blocks for quantum computation and simulation hybrid platforms

    Effect on the demand and stock returns: cross-sectional of Big Data and time-series analysis

    Get PDF
    For reducing the degree of uncertainty caused by constant change in the environment, large, medium or small, private or public organizations must support their decisions in something more than experience or intuition; they must be supported by the development of accurate and reliable forecasts in order to meet the needs in the organization planning tasks. This case study presents a growing company dedicated to the storage of perishable products and incorporates time series forecasting techniques to estimate the volume of storage to foresee the requirements of additional facilities, personnel and materials needed for product mobility

    Office and 24-hour heart rate and target organ damage in hypertensive patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We investigated the association between heart rate and its variability with the parameters that assess vascular, renal and cardiac target organ damage.</p> <p>Methods</p> <p>A cross-sectional study was performed including a consecutive sample of 360 hypertensive patients without heart rate lowering drugs (aged 56 ± 11 years, 64.2% male). Heart rate (HR) and its standard deviation (HRV) in clinical and 24-hour ambulatory monitoring were evaluated. Renal damage was assessed by glomerular filtration rate and albumin/creatinine ratio; vascular damage by carotid intima-media thickness and ankle/brachial index; and cardiac damage by the Cornell voltage-duration product and left ventricular mass index.</p> <p>Results</p> <p>There was a positive correlation between ambulatory, but not clinical, heart rate and its standard deviation with glomerular filtration rate, and a negative correlation with carotid intima-media thickness, and night/day ratio of systolic and diastolic blood pressure. There was no correlation with albumin/creatinine ratio, ankle/brachial index, Cornell voltage-duration product or left ventricular mass index. In the multiple linear regression analysis, after adjusting for age, the association of glomerular filtration rate and intima-media thickness with ambulatory heart rate and its standard deviation was lost. According to the logistic regression analysis, the predictors of any target organ damage were age (OR = 1.034 and 1.033) and night/day systolic blood pressure ratio (OR = 1.425 and 1.512). Neither 24 HR nor 24 HRV reached statistical significance.</p> <p>Conclusions</p> <p>High ambulatory heart rate and its variability, but not clinical HR, are associated with decreased carotid intima-media thickness and a higher glomerular filtration rate, although this is lost after adjusting for age.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01325064">NCT01325064</a></p

    Genome-Wide Screening of Genes Whose Enhanced Expression Affects Glycogen Accumulation in Escherichia coli

    Get PDF
    Using a systematic and comprehensive gene expression library (the ASKA library), we have carried out a genome-wide screening of the genes whose increased plasmid-directed expression affected glycogen metabolism in Escherichia coli. Of the 4123 clones of the collection, 28 displayed a glycogen-excess phenotype, whereas 58 displayed a glycogen-deficient phenotype. The genes whose enhanced expression affected glycogen accumulation were classified into various functional categories including carbon sensing, transport and metabolism, general stress and stringent responses, factors determining intercellular communication, aggregative and social behaviour, nitrogen metabolism and energy status. Noteworthy, one-third of them were genes about which little or nothing is known. We propose an integrated metabolic model wherein E. coli glycogen metabolism is highly interconnected with a wide variety of cellular processes and is tightly adjusted to the nutritional and energetic status of the cell. Furthermore, we provide clues about possible biological roles of genes of still unknown functions

    Preliminary safety and efficacy of first-line pertuzumab combined with trastuzumab and taxane therapy for HER2-positive locally recurrent or metastatic breast cancer (PERUSE).

    Get PDF
    BACKGROUND: Pertuzumab combined with trastuzumab and docetaxel is the standard first-line therapy for HER2-positive metastatic breast cancer, based on results from the phase III CLEOPATRA trial. PERUSE was designed to assess the safety and efficacy of investigator-selected taxane with pertuzumab and trastuzumab in this setting. PATIENTS AND METHODS: In the ongoing multicentre single-arm phase IIIb PERUSE study, patients with inoperable HER2-positive advanced breast cancer (locally recurrent/metastatic) (LR/MBC) and no prior systemic therapy for LR/MBC (except endocrine therapy) received docetaxel, paclitaxel or nab-paclitaxel with trastuzumab [8\u2009mg/kg loading dose, then 6\u2009mg/kg every 3\u2009weeks (q3w)] and pertuzumab (840\u2009mg loading dose, then 420\u2009mg q3w) until disease progression or unacceptable toxicity. The primary end point was safety. Secondary end points included overall response rate (ORR) and progression-free survival (PFS). RESULTS: Overall, 1436 patients received at least one treatment dose (initially docetaxel in 775 patients, paclitaxel in 589, nab-paclitaxel in 65; 7 discontinued before starting taxane). Median age was 54\u2009years; 29% had received prior trastuzumab. Median treatment duration was 16\u2009months for pertuzumab and trastuzumab and 4\u2009months for taxane. Compared with docetaxel-containing therapy, paclitaxel-containing therapy was associated with more neuropathy (all-grade peripheral neuropathy 31% versus 16%) but less febrile neutropenia (1% versus 11%) and mucositis (14% versus 25%). At this preliminary analysis (52 months' median follow-up), median PFS was 20.6 [95% confidence interval (CI) 18.9-22.7] months overall (19.6, 23.0 and 18.1\u2009months with docetaxel, paclitaxel and nab-paclitaxel, respectively). ORR was 80% (95% CI 78%-82%) overall (docetaxel 79%, paclitaxel 83%, nab-paclitaxel 77%). CONCLUSIONS: Preliminary findings from PERUSE suggest that the safety and efficacy of first-line pertuzumab, trastuzumab and taxane for HER2-positive LR/MBC are consistent with results from CLEOPATRA. Paclitaxel appears to be a valid alternative taxane backbone to docetaxel, offering similar PFS and ORR with a predictable safety profile. CLINICALTRIALS.GOV: NCT01572038

    Effect of SGLT2 inhibitors on stroke and atrial fibrillation in diabetic kidney disease: Results from the CREDENCE trial and meta-analysis

    Get PDF
    BACKGROUND AND PURPOSE: Chronic kidney disease with reduced estimated glomerular filtration rate or elevated albuminuria increases risk for ischemic and hemorrhagic stroke. This study assessed the effects of sodium glucose cotransporter 2 inhibitors (SGLT2i) on stroke and atrial fibrillation/flutter (AF/AFL) from CREDENCE (Canagliflozin and Renal Events in Diabetes With Established Nephropathy Clinical Evaluation) and a meta-Analysis of large cardiovascular outcome trials (CVOTs) of SGLT2i in type 2 diabetes mellitus. METHODS: CREDENCE randomized 4401 participants with type 2 diabetes mellitus and chronic kidney disease to canagliflozin or placebo. Post hoc, we estimated effects on fatal or nonfatal stroke, stroke subtypes, and intermediate markers of stroke risk including AF/AFL. Stroke and AF/AFL data from 3 other completed large CVOTs and CREDENCE were pooled using random-effects meta-Analysis. RESULTS: In CREDENCE, 142 participants experienced a stroke during follow-up (10.9/1000 patient-years with canagliflozin, 14.2/1000 patient-years with placebo; hazard ratio [HR], 0.77 [95% CI, 0.55-1.08]). Effects by stroke subtypes were: ischemic (HR, 0.88 [95% CI, 0.61-1.28]; n=111), hemorrhagic (HR, 0.50 [95% CI, 0.19-1.32]; n=18), and undetermined (HR, 0.54 [95% CI, 0.20-1.46]; n=17). There was no clear effect on AF/AFL (HR, 0.76 [95% CI, 0.53-1.10]; n=115). The overall effects in the 4 CVOTs combined were: Total stroke (HRpooled, 0.96 [95% CI, 0.82-1.12]), ischemic stroke (HRpooled, 1.01 [95% CI, 0.89-1.14]), hemorrhagic stroke (HRpooled, 0.50 [95% CI, 0.30-0.83]), undetermined stroke (HRpooled, 0.86 [95% CI, 0.49-1.51]), and AF/AFL (HRpooled, 0.81 [95% CI, 0.71-0.93]). There was evidence that SGLT2i effects on total stroke varied by baseline estimated glomerular filtration rate (P=0.01), with protection in the lowest estimated glomerular filtration rate (45 mL/min/1.73 m2]) subgroup (HRpooled, 0.50 [95% CI, 0.31-0.79]). CONCLUSIONS: Although we found no clear effect of SGLT2i on total stroke in CREDENCE or across trials combined, there was some evidence of benefit in preventing hemorrhagic stroke and AF/AFL, as well as total stroke for those with lowest estimated glomerular filtration rate. Future research should focus on confirming these data and exploring potential mechanisms

    Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector

    Full text link
    Measurements of electrons from νe\nu_e interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectrum is derived and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of lost energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50~MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons.Comment: 19 pages, 10 figure

    Final results from the PERUSE study of first-line pertuzumab plus trastuzumab plus a taxane for HER2-positive locally recurrent or metastatic breast cancer, with a multivariable approach to guide prognostication

    Get PDF
    Background: The phase III CLinical Evaluation Of Pertuzumab And TRAstuzumab (CLEOPATRA) trial established the combination of pertuzumab, trastuzumab and docetaxel as standard first-line therapy for human epidermal growth factor receptor 2 (HER2)-positive locally recurrent/metastatic breast cancer (LR/mBC). The multicentre single-arm PERtUzumab global SafEty (PERUSE) study assessed the safety and efficacy of pertuzumab and trastuzumab combined with investigator-selected taxane in this setting. Patients and methods: Eligible patients with inoperable HER2-positive LR/mBC and no prior systemic therapy for LR/mBC (except endocrine therapy) received docetaxel, paclitaxel or nab-paclitaxel with trastuzumab and pertuzumab until disease progression or unacceptable toxicity. The primary endpoint was safety. Secondary endpoints included progression-free survival (PFS) and overall survival (OS). Prespecified subgroup analyses included subgroups according to taxane, hormone receptor (HR) status and prior trastuzumab. Exploratory univariable analyses identified potential prognostic factors; those that remained significant in multivariable analysis were used to analyse PFS and OS in subgroups with all, some or none of these factors. Results: Of 1436 treated patients, 588 (41%) initially received paclitaxel and 918 (64%) had HR-positive disease. The most common grade 653 adverse events were neutropenia (10%, mainly with docetaxel) and diarrhoea (8%). At the final analysis (median follow-up: 5.7 years), median PFS was 20.7 [95% confidence interval (CI) 18.9-23.1] months overall and was similar irrespective of HR status or taxane. Median OS was 65.3 (95% CI 60.9-70.9) months overall. OS was similar regardless of taxane backbone but was more favourable in patients with HR-positive than HR-negative LR/mBC. In exploratory analyses, trastuzumab-pretreated patients with visceral disease had the shortest median PFS (13.1 months) and OS (46.3 months). Conclusions: Mature results from PERUSE show a safety and efficacy profile consistent with results from CLEOPATRA and median OS exceeding 5 years. Results suggest that paclitaxel is a valid alternative to docetaxel as backbone chemotherapy. Exploratory analyses suggest risk factors that could guide future trial design

    Snowmass Neutrino Frontier: DUNE Physics Summary

    Full text link
    The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino oscillation experiment with a primary physics goal of observing neutrino and antineutrino oscillation patterns to precisely measure the parameters governing long-baseline neutrino oscillation in a single experiment, and to test the three-flavor paradigm. DUNE's design has been developed by a large, international collaboration of scientists and engineers to have unique capability to measure neutrino oscillation as a function of energy in a broadband beam, to resolve degeneracy among oscillation parameters, and to control systematic uncertainty using the exquisite imaging capability of massive LArTPC far detector modules and an argon-based near detector. DUNE's neutrino oscillation measurements will unambiguously resolve the neutrino mass ordering and provide the sensitivity to discover CP violation in neutrinos for a wide range of possible values of δCP\delta_{CP}. DUNE is also uniquely sensitive to electron neutrinos from a galactic supernova burst, and to a broad range of physics beyond the Standard Model (BSM), including nucleon decays. DUNE is anticipated to begin collecting physics data with Phase I, an initial experiment configuration consisting of two far detector modules and a minimal suite of near detector components, with a 1.2 MW proton beam. To realize its extensive, world-leading physics potential requires the full scope of DUNE be completed in Phase II. The three Phase II upgrades are all necessary to achieve DUNE's physics goals: (1) addition of far detector modules three and four for a total FD fiducial mass of at least 40 kt, (2) upgrade of the proton beam power from 1.2 MW to 2.4 MW, and (3) replacement of the near detector's temporary muon spectrometer with a magnetized, high-pressure gaseous argon TPC and calorimeter.Comment: Contribution to Snowmass 202

    Snowmass Neutrino Frontier: DUNE Physics Summary

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino oscillation experiment with a primary physics goal of observing neutrino and antineutrino oscillation patterns to precisely measure the parameters governing long-baseline neutrino oscillation in a single experiment, and to test the three-flavor paradigm. DUNE's design has been developed by a large, international collaboration of scientists and engineers to have unique capability to measure neutrino oscillation as a function of energy in a broadband beam, to resolve degeneracy among oscillation parameters, and to control systematic uncertainty using the exquisite imaging capability of massive LArTPC far detector modules and an argon-based near detector. DUNE's neutrino oscillation measurements will unambiguously resolve the neutrino mass ordering and provide the sensitivity to discover CP violation in neutrinos for a wide range of possible values of δCP. DUNE is also uniquely sensitive to electron neutrinos from a galactic supernova burst, and to a broad range of physics beyond the Standard Model (BSM), including nucleon decays. DUNE is anticipated to begin collecting physics data with Phase I, an initial experiment configuration consisting of two far detector modules and a minimal suite of near detector components, with a 1.2 MW proton beam. To realize its extensive, world-leading physics potential requires the full scope of DUNE be completed in Phase II. The three Phase II upgrades are all necessary to achieve DUNE's physics goals: (1) addition of far detector modules three and four for a total FD fiducial mass of at least 40 kt, (2) upgrade of the proton beam power from 1.2 MW to 2.4 MW, and (3) replacement of the near detector's temporary muon spectrometer with a magnetized, high-pressure gaseous argon TPC and calorimeter
    corecore