72 research outputs found

    Kinetics of Hydrogen Absorption and Desorption in Titanium

    Get PDF
    Titanium is reactive toward hydrogen forming metal hydride which has a potential application in      energy storage and conversion. Titanium hydride has been widely studied for hydrogen storage, thermal storage, and battery electrodes applications. A special interest is using titanium for hydrogen production in a hydrogen sorption-enhanced steam reforming of natural gas. In the present work, non-isothermal dehydrogenation kinetics of titanium hydride and kinetics of hydrogenation in gaseous flow at isothermal conditions were investigated. The hydrogen desorption was studied using temperature desorption spectroscopy (TDS) while the hydrogen absorption and desorption in gaseous flow were studied by temperature programmed desorption (TPD). The present work showed that the path of dehydrogenation of the TiH2 is dÂźbÂźa hydride phase with possible overlapping steps occurred. The fast hydrogen desorption rate observed at the TDS main peak temperature were correlated with the fast transformation of the d-TiH1.41 to b-TiH0.59. In the gaseous flow, hydrogen absorption and desorption were related to the transformation of b-TiH0.59 Û d-TiH1.41 with 2 wt.% hydrogen reversible content. Copyright © 2017 BCREC Group. All rights reserved Received: 21st November 2016; Revised: 20th March 2017; Accepted: 9th April 2017; Available online: 27th October 2017; Published regularly: December 2017 How to Cite: Suwarno, S., Yartys, V.A. (2017). Kinetics of Hydrogen Absorption and Desorption in Titanium. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (3): 312-317  (doi:10.9767/bcrec.12.3.810.312-317

    Kinetics of Hydrogen Absorption and Desorption in Titanium

    Get PDF
    Titanium is reactive toward hydrogen forming metal hydride which has a potential application in      energy storage and conversion. Titanium hydride has been widely studied for hydrogen storage, thermal storage, and battery electrodes applications. A special interest is using titanium for hydrogen production in a hydrogen sorption-enhanced steam reforming of natural gas. In the present work, non-isothermal dehydrogenation kinetics of titanium hydride and kinetics of hydrogenation in gaseous flow at isothermal conditions were investigated. The hydrogen desorption was studied using temperature desorption spectroscopy (TDS) while the hydrogen absorption and desorption in gaseous flow were studied by temperature programmed desorption (TPD). The present work showed that the path of dehydrogenation of the TiH2 is d¼b¼a hydride phase with possible overlapping steps occurred. The fast hydrogen desorption rate observed at the TDS main peak temperature were correlated with the fast transformation of the d-TiH1.41 to b-TiH0.59. In the gaseous flow, hydrogen absorption and desorption were related to the transformation of b-TiH0.59 Û d-TiH1.41 with 2 wt.% hydrogen reversible content. 

    Cohesion of BaReH9_9 and BaMnH9_9: Density Functional Calculations and Prediction of (MnH9)2−_9)^{2-} Salts

    Full text link
    Density functional calculations are used to calculate the structural and electronic properties of BaReH9_9 and to analyze the bonding in this compound. The high coordination in BaReH9_9 is due to bonding between Re 5dd states and states of dd-like symmetry formed from combinations of H ss orbitals in the H9_9 cage. This explains the structure of the material, its short bond lengths and other physical properties, such as the high band gap. We compare with results for hypothetical BaMnH9_9, which we find to have similar bonding and cohesion to the Re compound. This suggests that it may be possible to synthesize (MnH9)2−_9)^{2-} salts. Depending on the particular cation, such salts may have exceptionally high hydrogen contents, in excess of 10 weight

    Hydrogen induced structural phase transformation in ScNiSn-based intermetallic hydride characterized by experimental and computational studies

    Get PDF
    Understanding an interrelation between the structure, chemical composition and hydrogenation properties of intermetallic hydrides is crucial for the improvement of their hydrogen storage performance. Ability to form the hydrides and to tune the thermodynamics and kinetics of their interaction with hydrogen is related to their chemical composition. Some features of the metal–hydrogen interactions remain however poorly studied, including chemistry of Sc-containing hydrides. ZrNiAl-type ScNiSn-based intermetallic hydride has been probed in the present work using a broad range of experimental techniques including Synchrotron and Neutron Powder Diffraction, 119^{119}Sn Möessbauer Spectroscopy, hydrogenation at pressures reaching several kbar H2_2 and hydrogen Thermal Desorption Spectroscopy studies. Computational DFT calculations have been furthermore performed. This allowed to establish the mechanism of the phase-structural transformation and electronic structure changes causing a unique contraction of the metal lattice of intermetallic alloy and the formation of the ...H-Ni-H-Ni
 chains in the structure with H atoms carrying a partial negative charge. Such hydrogen absorption accompanied by a formation of a covalent Ni-H bonding and causing an unusual behavior contracts to the conventionally observed bonding mechanism of hydrogen in metals as based on the metallic bonding frequently accompanied by a jumping diffusion movement of the inserted H atoms – in contrast to the directional Metal-Hydrogen bonding observed in the present work. At high applied pressures ScNiSnH0.83_{0.83} orthorhombic TiNiSi type hydride is formed with H atoms filling Sc3_3Ni tetrahedra. Finally, this study shows that scandium closely resembles the behavior of the heavy rare earth metal holmium

    Hydrides of Laves type Ti–Zr alloys with enhanced H storage capacity as advanced metal hydride battery anodes

    Get PDF
    The present work was focused on the studies of the effect of variation of stoichiometric composition of Ti–Zr based AB2±x Laves phase alloys by changing the ratio between A (Ti + Zr) and B (Mn + V + Fe + Ni) components belonging to both hypo-stoichiometric (AB1.90, AB1.95) and over-stoichiometric (AB2.08) alloys further to the stoichiometric AB2.0 composition to optimize their hydrogen storage behaviours and performances as the alloy anodes of nickel metal hydride batteries. AB2-xLa0.03 Laves type alloys (A = Ti0.15Zr0.85; B = Mn0.64–0.69V0.11–0.119Fe0.11–0.119Ni1.097–1.184; x = 0, 0.05 and 0.1) were arc melted and then homogenized by annealing. The studies involved probing of the phase-structural composition by X-Ray diffraction (XRD), together with studies of the microstructural state, hydrogen absorption–desorption and thermodynamic characteristics of gas–solid reactions and electrochemical charge-discharge performance, further to the impedance spectroscopy characterization. The alloys were probed using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and XRD. These studies concluded that the alloys contained the main C15 FCC Laves type AB2 intermetallic co-existing with a secondary C14 hexagonal Laves phase and a small amount of LaNi intermetallic

    Magnesium based materials for hydrogen based energy storage: Past, present and future

    Get PDF
    Magnesium hydride owns the largest share of publications on solid materials for hydrogen storage. The “Magnesium group” of international experts contributing to IEA Task 32 “Hydrogen Based Energy Storage” recently published two review papers presenting the activities of the group focused on magnesium hydride based materials and on Mg based compounds for hydrogen and energy storage. This review article not only overviews the latest activities on both fundamental aspects of Mg-based hydrides and their applications, but also presents a historic overview on the topic and outlines projected future developments. Particular attention is paid to the theoretical and experimental studies of Mg-H system at extreme pressures, kinetics and thermodynamics of the systems based on MgH2, nanostructuring, new Mg-based compounds and novel composites, and catalysis in the Mg based H storage systems. Finally, thermal energy storage and upscaled H storage systems accommodating MgH2 are presented

    Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives

    Get PDF
    Metal hydrides are known as a potential efficient, low-risk option for high-density hydrogen storage since the late 1970s. In this paper, the present status and the future perspectives of the use of metal hydrides for hydrogen storage are discussed. Since the early 1990s, interstitial metal hydrides are known as base materials for Ni – metal hydride rechargeable batteries. For hydrogen storage, metal hydride systems have been developed in the 2010s [1] for use in emergency or backup power units, i. e. for stationary applications. With the development and completion of the first submarines of the U212 A series by HDW (now Thyssen Krupp Marine Systems) in 2003 and its export class U214 in 2004, the use of metal hydrides for hydrogen storage in mobile applications has been established, with new application fields coming into focus. In the last decades, a huge number of new intermetallic and partially covalent hydrogen absorbing compounds has been identified and partly more, partly less extensively characterized. In addition, based on the thermodynamic properties of metal hydrides, this class of materials gives the opportunity to develop a new hydrogen compression technology. They allow the direct conversion from thermal energy into the compression of hydrogen gas without the need of any moving parts. Such compressors have been developed and are nowadays commercially available for pressures up to 200 bar. Metal hydride based compressors for higher pressures are under development. Moreover, storage systems consisting of the combination of metal hydrides and high-pressure vessels have been proposed as a realistic solution for on-board hydrogen storage on fuel cell vehicles. In the frame of the “Hydrogen Storage Systems for Mobile and Stationary Applications” Group in the International Energy Agency (IEA) Hydrogen Task 32 “Hydrogen-based energy storage”, different compounds have been and will be scaled-up in the near future and tested in the range of 500 g to several hundred kg for use in hydrogen storage applications.Fil: Bellosta von Colbe, Jose. Helmholtz-Zentrum Geesthacht; AlemaniaFil: Ares FernĂĄndez, JosĂ© RamĂłn. Universidad AutĂłnoma de Madrid; EspañaFil: Jussara, Barale. UniversitĂ  di Torino; ItaliaFil: Baricco, Marcello. UniversitĂ  di Torino; ItaliaFil: Buckley, Craig E.. Curtin University; AustraliaFil: Capurso, Giovanni. Helmholtz Zentrum Geesthacht; AlemaniaFil: Gallandat, Noris. GRZ Technologies Ltd; SuizaFil: Grant, David M.. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido. University of Nottingham; Estados UnidosFil: Guzik, Matylda N.. University of Oslo; NoruegaFil: Jacob, Isaac. Ben Gurion University of the Negev; IsraelFil: Jensen, Emil H.. University of Oslo; NoruegaFil: Jensen, Torben. University Aarhus; DinamarcaFil: Jepsen, Julian. Helmholtz Zentrum Geesthacht; AlemaniaFil: Klassen, Thomas. Helmholtz Zentrum Geesthacht; AlemaniaFil: Lototskyy, Mykhaylol V.. University of Cape Town; SudĂĄfricaFil: Manickam, Kandavel. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino UnidoFil: Montone, Amelia. Casaccia Research Centre; ItaliaFil: Puszkiel, JuliĂĄn Atilio. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Helmholtz Zentrum Geesthacht; AlemaniaFil: Sartori, Sabrina. University of Oslo; NoruegaFil: Sheppard, Drew A.. Curtin University; AustraliaFil: Stuart, Alastair. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino UnidoFil: Walker, Gavin. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino UnidoFil: Webb, Colin J.. Griffith University; AustraliaFil: Yang, Heena. Empa Materials Science & Technology; Suiza. École Polytechnique FĂ©dĂ©rale de Lausanne; SuizaFil: Yartys, Volodymyr. Institute for Energy Technology; NoruegaFil: ZĂŒttel, Andreas. Empa Materials Science & Technology; Suiza. École Polytechnique FĂ©dĂ©rale de Lausanne; SuizaFil: Dornheim, Martin. Helmholtz Zentrum Geesthacht; Alemani

    Metal hydride hydrogen storage and compression systems for energy storage technologies

    Get PDF
    Along with a brief overview of literature data on energy storage technologies utilising hydrogen and metal hydrides, this article presents results of the related R&D activities carried out by the authors. The focus is put on proper selection of metal hydride materials on the basis of AB5- and AB2-type intermetallic compounds for hydrogen storage and compression applications, based on the analysis of PCT properties of the materials in systems with H2 gas. The article also presents features of integrated energy storage systems utilising metal hydride hydrogen storage and compression, as well as their metal hydride based components developed at IPCP and HySA Systems
    • 

    corecore