380 research outputs found

    Equine allergic skin diseases: Clinical consensus guidelines of the World Association for Veterinary Dermatology

    Get PDF
    Background Allergic skin diseases are common in horses worldwide. The most common causes are insect bites and environmental allergens. Objectives To review the current literature and provide consensus on pathogenesis, diagnosis, treatment and prevention. Materials and Methods The authors reviewed the literature up to November 2022. Results were presented at North America Veterinary Dermatology Forum (2021) and European Veterinary Dermatology Congress (2021). The report was available to member organisations of the World Association for Veterinary Dermatology for feedback. Conclusions and Clinical Relevance Insect bite hypersensitivity (IBH) is the best characterised allergic skin disease. An immunoglobulin (Ig)E response against Culicoides salivary antigens is widely documented. Genetics and environmental factors play important roles. Tests with high sensitivity and specificity are lacking, and diagnosis of IBH is based on clinical signs, seasonality and response to insect control. Eosinophils, interleukin (IL)-5 and IL-31 are explored as therapeutic targets. Presently, the most effective treatment is insect avoidance. Existing evidence does not support allergen-specific immunotherapy (ASIT) using commercially available extracts of Culicoides. Hypersensitivity to environmental allergens (atopic dermatitis) is the next most common allergy. A role for IgE is supported by serological investigation, skin test studies and positive response to ASIT. Prospective, controlled, randomised studies are limited, and treatment relies largely on glucocorticoids, antihistamines and ASIT based on retrospective studies. Foods are known triggers for urticaria, yet their role in pruritic dermatitis is unknown. Recurrent urticaria is common in horses, yet our understanding is limited and focussed on IgE and T-helper 2 cell response. Prospective, controlled studies on treatments for urticaria are lacking. Glucocorticoids and antihistamines are primary reported treatments

    Porphyromonas gingivalis gingipains cause defective macrophage migration towards apoptotic cells and inhibit phagocytosis of primary apoptotic neutrophils:gingipains, apoptotic cell removal & inflammation

    Get PDF
    Periodontal disease is a prevalent chronic inflammatory condition characterised by an aberrant host response to a pathogenic plaque biofilm resulting in local tissue damage and frustrated healing that can result in tooth loss. Cysteine proteases (gingipains) from the key periodontal pathogen Porphyromonas gingivalis have been implicated in periodontal disease pathogenesis by inhibiting inflammation resolution and are linked with systemic chronic inflammatory conditions such as rheumatoid arthritis. Efficient clearance of apoptotic cells is essential for the resolution of inflammation and tissue restoration. Here we sought to characterise the innate immune clearance of apoptotic cells and its modulation by gingipains. We examined the capacity of gingipain-treated macrophages to migrate towards and phagocytose apoptotic cells. Lysine gingipain treatment of macrophages impaired macrophage migration towards apoptotic neutrophils. Furthermore, lysine gingipain treatment reduced surface expression levels of CD14, a key macrophage receptor for apoptotic cells, which resulted in reduced macrophage interactions with apoptotic cells. Additionally, whilst apoptotic cells and their derived secretome were shown to inhibit TNF-α induced expression by P.gingivalis LPS, we demonstrated that gingipain preparations induced a rapid inflammatory response in macrophages that was resistant to the anti-inflammatory effects of apoptotic cells or their secretome. Taken together these data indicate that P.gingivalis may promote the chronic inflammation seen in periodontal disease patients by multiple mechanisms including rapid, potent gingipain-mediated inflammation coupled with receptor cleavage leading to defective clearance of apoptotic cells and reduced anti-inflammatory responses. Thus gingipains represent a potential therapeutic target for intervention in the management of chronic periodontal disease

    The N-terminus of CD14 acts to bind apoptotic cells and confers rapid-tethering capabilities on non-myeloid cells:CD14 and rapid tethering of apoptotic cells

    Get PDF
    Cell death and removal of cell corpses in a timely manner is a key event in both physiological and pathological situations including tissue homeostasis and the resolution of inflammation. Phagocytic clearance of cells dying by apoptosis is a complex sequential process comprising attraction, recognition, tethering, signalling and ultimately phagocytosis and degradation of cell corpses. A wide range of molecules acting as apoptotic cell-associated ligands, phagocyte-associated receptors or soluble bridging molecules have been implicated within this process. The role of myeloid cell CD14 in mediating apoptotic cell interactions with macrophages has long been known though key molecules and residues involved have not been defined. Here we sought to further dissect the function of CD14 in apoptotic cell clearance. A novel panel of THP-1 cell-derived phagocytes was employed to demonstrate that CD14 mediates effective apoptotic cell interactions with macrophages in the absence of detectable TLR4 whilst binding and responsiveness to LPS requires TLR4. Using a targeted series of CD14 point mutants expressed in non-myeloid cells we reveal CD14 residue 11 as key in the binding of apoptotic cells whilst other residues are reported as key for LPS binding. Importantly we note that expression of CD14 in non-myeloid cells confers the ability to bind rapidly to apoptotic cells. Analysis of a panel of epithelial cells reveals that a number naturally express CD14 and that this is competent to mediate apoptotic cell clearance. Taken together these data suggest that CD14 relies on residue 11 for apoptotic cell tethering and it may be an important tethering molecule on so called 'non-professional' phagocytes thus contributing to apoptotic cell clearance in a non-myeloid setting. Furthermore these data establish CD14 as a rapid-acting tethering molecule, expressed in monocytes, which may thus confer responsiveness of circulating monocytes to apoptotic cell derived material. © 2013 Thomas et al

    Pb(II) Induces Scramblase Activation and Ceramide-Domain Generation in Red Blood Cells

    Get PDF
    The mechanisms of Pb(II) toxicity have been studied in human red blood cells using confocal microscopy, immunolabeling, fluorescence-activated cell sorting and atomic force microscopy. The process follows a sequence of events, starting with calcium entry, followed by potassium release, morphological change, generation of ceramide, lipid flip-flop and finally cell lysis. Clotrimazole blocks potassium channels and the whole process is inhibited. Immunolabeling reveals the generation of ceramide-enriched domains linked to a cell morphological change, while the use of a neutral sphingomyelinase inhibitor greatly delays the process after the morphological change, and lipid flip-flop is significantly reduced. These facts point to three major checkpoints in the process: first the upstream exchange of calcium and potassium, then ceramide domain formation, and finally the downstream scramblase activation necessary for cell lysis. In addition, partial non-cytotoxic cholesterol depletion of red blood cells accelerates the process as the morphological change occurs faster. Cholesterol could have a role in modulating the properties of the ceramide-enriched domains. This work is relevant in the context of cell death, heavy metal toxicity and sphingolipid signaling.AGA was a predoctoral student supported by the Basque Government and later by the University of the Basque Country (UPV/EHU). This work was also supported in part by grants from the Spanish Government (FEDER/MINECO BFU 2015-66306-P to F.M.G. and A.A.) and the Basque Government (IT849-13 to F.M.G. and IT838-13 to A.A.), and by the Swiss National Science Foundation

    Site-Specific Labeling of Annexin V with F-18 for Apoptosis Imaging

    Get PDF
    Annexin V is useful in detecting apoptotic cells by binding to phosphatidylserine (PS) that is exposed on the outer surface of the cell membrane during apoptosis. In this study, we examined the labeling of annexin V-128, a mutated form of annexin V that has a single cysteine residue at the NH2 terminus, with the thiol-selective reagent 18F-labeling agent N-[4-[(4-[18F]fluorobenzylidene)aminooxy]butyl]maleimide ([18F]FBABM). We also examined the cell binding affinity of the 18F-labeled annexin V-128 ([18F]FAN-128). [18F]FBABM was synthesized in two-step, one-pot method modified from literature procedure. (Toyokuni et al., Bioconjugate Chem. 2003, 14, 1253−1259). The average yield of [18F]FBABM was 23 ± 4% (n = 4, decay-corrected) and the specific activity was ∼6000 Ci/mmol. The total synthesis time was ∼92 min. The critical improvement of this study was identifying and then developing a purification method to remove an impurity N-[4-[(4-dimethylaminobenzylidene)aminooxy]butyl]maleimide 4, whose presence dramatically decreased the yield of protein labeling. Conjugation of [18F]FBABM with the thiol-containing annexin V-128 gave [18F]FAN-128 in 37 ± 9% yield (n = 4, decay corrected). Erythrocyte binding assay of [18F]FAN-128 showed that this modification of annexin V-128 did not compromise its membrane binding affinity. Thus, an in vivo investigation of [18F]FAN-128 as an apoptosis imaging agent is warranted

    HIV-1 Promotes Intake of Leishmania Parasites by Enhancing Phosphatidylserine-Mediated, CD91/LRP-1-Dependent Phagocytosis in Human Macrophages

    Get PDF
    Over the past decade, the number of reported human immunodeficiency virus type-1 (HIV-1)/Leishmania co-infections has risen dramatically, particularly in regions where both diseases are endemic. Although it is known that HIV-1 infection leads to an increase in susceptibility to Leishmania infection and leishmaniasis relapse, little remains known on how HIV-1 contributes to Leishmania parasitaemia. Both pathogens infect human macrophages, and the intracellular growth of Leishmania is increased by HIV-1 in co-infected cultures. We now report that uninfected bystander cells, not macrophages productively infected with HIV-1, account for enhanced phagocytosis and higher multiplication of Leishmania parasites. This effect can be driven by HIV-1 Tat protein and transforming growth factor-beta (TGF-β). Furthermore, we show for the first time that HIV-1 infection increases surface expression of phosphatidylserine receptor CD91/LRP-1 on human macrophages, thereby leading to a Leishmania uptake by uninfected bystander cells in HIV-1-infected macrophage populations. The more important internalization of parasites is due to interactions between the scavenger receptor CD91/LRP-1 and phosphatidylserine residues exposed at the surface of Leishmania. We determined also that enhanced CD91/LRP-1 surface expression occurs rapidly following HIV-1 infection, and is triggered by the activation of extracellular TGF-β. Thus, these results establish an intricate link between HIV-1 infection, Tat, surface CD91/LRP-1, TGF-β, and enhanced Leishmania phosphatidylserine-mediated phagocytosis

    Changes in Plasma Membrane Surface Potential of PC12 Cells as Measured by Kelvin Probe Force Microscopy

    Get PDF
    The plasma membrane of a cell not only works as a physical barrier but also mediates the signal relay between the extracellular milieu and the cell interior. Various stimulants may cause the redistribution of molecules, like lipids, proteins, and polysaccharides, on the plasma membrane and change the surface potential (Φs). In this study, the Φss of PC12 cell plasma membranes were measured by atomic force microscopy in Kelvin probe mode (KPFM). The skewness values of the Φss distribution histogram were found to be mostly negative, and the incorporation of negatively charged phosphatidylserine shifted the average skewness values to positive. After being treated with H2O2, dopamine, or Zn2+, phosphatidylserine was found to be translocated to the membrane outer leaflet and the averaged skewness values were changed to positive values. These results demonstrated that KPFM can be used to monitor cell physiology status in response to various stimulants with high spatial resolution
    corecore