49 research outputs found

    Anti-apoptotic seminal vesicle protein IV inhibits cell-mediated immunity.

    Get PDF
    The in vitro effect of seminal vesicle protein IV (SV-IV) on the cytotoxic activity of human natural or acquired cellular immunity has been investigated by standard immunological procedures, a 51Cr-release cytotoxicity assay, and labeled-ligand binding experiments. The data obtained demonstrate that: (1) fluoresceinated or [125I]-labeled SV-IV binds specifically to the surface of human purified non-adherent monuclear cells (NA-MNC); (2)SV-IV suppresses the cytotoxicity of natural killer (NK) cells against K562 target cells, that of IL-2-stimulated NK (LAK) cells against DAUDI target cells, and that of VEL antigen-sensitized cytotoxic T lymphocytes (CTLs) against VEL target cells; (3) treatment of K562 target cells alone with SV-IV decreases their susceptibility to NK-induced lysis. These findings indicate that the protein SV-IV has a marked in vitro inhibitory effect on NK, LAK and CTL cytotoxicity, providing a better understanding of its immune regulatory functions

    Antiapoptotic Seminal Vesicle Protein IV Induces Histamine Release from Human FcεRI+ Cells.

    Get PDF
    BACKGROUND: Seminal vesicle protein number 4 (SV-IV) is a small, basic, multifunctional, intrinsically disordered secretory protein synthesized in large amounts by rat seminal vesicle epithelium under androgen transcriptional control. SV-IV-immunorelated proteins occur in other rat tissues and in humans. METHODS: The in vitro effect of SV-IV on human FcepsilonRI+ cells was investigated by standard immunologic, biochemical and molecular biology procedures. RESULTS: SV-IV-induced histamine release from human basophils and lung mast cells without any influence on leukotriene C(4) release and cell migration. The histamine release rate was slower compared with that induced by anti-IgE, the temperature dependence of the event being similar. SV-IV-induced histamine release was Ca2+-dependent, suggesting a physiological interaction of the protein with FcepsilonRI+ cells. SV-IV and anti-IgE acted synergistically on the histamine release. SV-IV did not induce de novo synthesis of cytokines and growth factors (transforming growth factor-beta(1), interleukin-10, interleukin-13, tumor necrosis factor-alpha, vascular endothelial growth factor A) in FcεRI+ cells. CONCLUSIONS: SV-IV protein induces in human FcεRI+ cells the release of histamine, a proinflammatory, antiapoptotic and immunosuppressive biogenic amine. These data: (1) are consistent with the antiapoptotic and immunosuppressive properties of SV-IV; (2) confirm a regulatory feature of SV-IV on mammal inflammatory reactivity by either inhibiting the arachidonate cascade pathway or stimulating proinflammatory cytokine release from lymphocyte/monocytes and histamine from FcεRI+ cells; (3) raise the possibility of a protective role of SV-IV on implanting hemiallogenic blastocysts against maternal reactive oxygen species and immunological attacks at the uterine implantation site

    Survivin promoter -31G/C polymorphism in oral cancer cell lines.

    Get PDF
    Survivin (SVV) is a protein that belongs to the inhibitor of apoptosis proteins (IAP) family and is involved in the G2/M phase progression of the cell cycle as a spindle-associated molecule. The biological features of this protein are well documented and its activity appears to be involved in mitochondria-dependent and -independent antiapoptotic pathways. Overexpression of SVV at the transcriptional and translational level has been associated with cancer, a multifactorial disorder in which the occurrence of a -31G to C polymorphism in the promoter region may significantly contribute to the development of this pathology. To verify this hypothesis, the occurrence of a single nucleotide polymorphism (SNP) in cis-acting cell cycle-dependent elements (CDEs) and in cell cycle homology regions (CHRs) of the survivin TATA-less promoter was investigated. A total of 23 oral squamous cell carcinoma (OSCC) cell lines and normal epithelium-derived normal human epidermal keratinocyte (NHEK) cell lines were analyzed by RFLP and direct DNA sequencing of their promoter region. Furthermore, survivin expression at the transcriptional and translational levels was evaluated in these cells by RT-PCR and Western blotting, respectively. The findings indicate that the presence of a G or C allele is not directly correlated to survivin expression, at the mRNA or at the protein level, at least in the OSCC lines analyzed in this study

    Protein SV-IV promotes nitric oxide production not associated with apoptosis in murine J774 macrophages

    No full text
    SV-IV (seminal vesicle protein no. 4) is a potent immunomodulatory and anti-inflammatory secretory protein (Mr 9758) produced in large amounts by the rat seminal vesicle epithelium. Here we show that this protein possesses the ability to upregulate in J774 macrophages the expression of the gene coding for the inducible nitric oxide synthase (iNOS). The increase in NO production consequent on the marked enhancement of iNOS activity was not associated with apoptotic damage of the SV-IV-treated cells. In the same experimental model, however, LPS induced upregulation of iNOS coupled with an increase in NO production and marked apoptotic death. Differences in the ability of SV-IV and LPS to control the life/death signal balance in target cells via trans-membrane activation of apoptotic (mediated by TNF-alpha and NO/iNOS system) and anti-apoptotic (mediated by bcl-2, c-myc, etc.) pathways are suggested to be the basis of the apoptotic fate of the experimentally treated cells. In addition, considering the important role played by NO in the process of mammalian reproduction, SV-IV may be involved in the fine tuning of NO concentration in the female genital tract mucosa via an SV-IV-mediated control of iNOS gene expression in local macrophages

    Proteomic approach to characterize the biocontrol mechanism of Trichoderma harzianum T39 in grapevine

    No full text
    Some biocontrol agents can activate defense mechanisms and increase grapevine resistance against pathogens. In particular Trichoderma harzianum T39 induces systemic resistance and significantly reduces downy mildew symptoms caused by Plasmopara viticola. This biocontrol agent could offer a powerful alternative to chemical pesticides, but more knowledge of the mechanisms of resistance induction is required in order to maximize its efficacy. A proteomic approach was undertaken to increase our understanding of the basis of resistance to these major pathogen and to identify potential new priming effectors in grapevin
    corecore