69 research outputs found

    Importing genetically altered animals : ensuring quality

    Get PDF
    The reproducibility of research using laboratory animals requires reliable management of their quality, in particular of their genetics, health and environment, all of which contribute to their phenotypes. The point at which these biological materials are transferred between researchers is particularly sensitive, as it may result in a loss of integrity of the animals and/or their documentation. Here, we describe the various aspects of laboratory animal quality that should be confirmed when sharing rodent research models. We also discuss how repositories of biological materials support the scientific community to ensure the continuity of the quality of laboratory animals. Both the concept of quality and the role of repositories themselves extend to all exchanges of biological materials and all networks that support the sharing of these reagents.Peer reviewe

    Trim37-deficient mice recapitulate several features of the multi-organ disorder Mulibrey nanism

    Get PDF
    Mulibrey nanism (MUL) is a rare autosomal recessive multi-organ disorder characterized by severe prenatal-onset growth failure, infertility, cardiopathy, risk for tumors, fatty liver, and type 2 diabetes. MUL is caused by loss-of-function mutations in TRIM37, which encodes an E3 ubiquitin ligase belonging to the tripartite motif (TRIM) protein family and having both peroxisomal and nuclear localization. We describe a congenic Trim37 knock-out mouse (Trim37(-/-)) model for MUL. Trim37(-/-) mice were viable and had normal weight development until approximately 12 months of age, after which they started to manifest increasing problems in wellbeing and weight loss. Assessment of skeletal parameters with computer tomography revealed significantly smaller skull size, but no difference in the lengths of long bones in Trim37(-/-) mice as compared with wildtype. Both male and female Trim37(-/-) mice were infertile, the gonads showing germ cell aplasia, hilus and Leydig cell hyperplasia and accumulation of lipids in and around Leydig cells. Male Trim37(-/-) mice had elevated levels of follicle-stimulating and luteinizing hormones, but maintained normal levels of testosterone. Six-month-old Trim37(-/-) mice had elevated fasting blood glucose and low fasting serum insulin levels. At 1.5 years Trim37(-/-) mice showed non-compaction cardiomyopathy, hepatomegaly, fatty liver and various tumors. The amount and morphology of liver peroxisomes seemed normal in Trim37(-/-) mice. The most consistently seen phenotypes in Trim37(-/-) mice were infertility and the associated hormonal findings, whereas there was more variability in the other phenotypes observed. Trim37(-/-) mice recapitulate several features of the human MUL disease and thus provide a good model to study disease pathogenesis related to TRIM37 deficiency, including infertility, non-alcoholic fatty liver disease, cardiomyopathy and tumorigenesis

    Impact of voluntary exercise and housing conditions on hippocampal glucocorticoid receptor, miR-124 and anxiety

    Get PDF
    Background: Lack of physical activity and increased levels of stress contribute to the development of multiple physical and mental disorders. An increasing number of studies relate voluntary exercise with greater resilience to psychological stress, a process that is highly regulated by the hypothalamic-pituitary-adrenal (HPA) axis. However, the molecular mechanisms underlying the beneficial effects of exercise on stress resilience are still poorly understood. Here we have studied the impact of long term exercise and housing conditions on: a) hippocampal expression of glucocorticoid receptor (Nr3c1), b) epigenetic regulation of Nr3c1 (DNA methylation at the Nr3c1-1F promoter and miR-124 expression), c) anxiety (elevated plus maze, EPM), and d) adrenal gland weight and adrenocorticotropic hormone receptor (Mc2r) expression. Results: Exercise increased Nr3c1 and Nr3c1-1F expression and decreased miR-124 levels in the hippocampus in single-housed mice, suggesting enhanced resilience to stress. The opposite was found for pair-housed animals. Bisulfite sequencing showed virtually no DNA methylation in the Nr3c1-1F promoter region. Single-housing increased the time spent on stretch attend postures. Exercise decreased the time spent at the open arms of the EPM, however, the mobility of the exercise groups was significantly lower. Exercise had opposite effects on the adrenal gland weight of single and pair-housed mice, while it had no effect on adrenal Mc2r expression. Conclusions: These results suggest that exercise exerts a positive impact on stress resilience in single-housed mice that could be mediated by decreasing miR-124 and increasing Nr3c1 expression in the hippocampus. However, pair-housing reverses these effects possibly due to stress from dominance disputes between pairs

    Relevance of Stress and Female Sex Hormones for Emotion and Cognition

    Get PDF
    There are clear sex differences in incidence and onset of stress-related and other psychiatric disorders in humans. Yet, rodent models for psychiatric disorders are predominantly based on male animals. The strongest argument for not using female rodents is their estrous cycle and the fluctuating sex hormones per phase which multiplies the number of animals to be tested. Here, we will discuss studies focused on sex differences in emotionality and cognitive abilities in experimental conditions with and without stress. First, female sex hormones such as estrogens and progesterone affect emotions and cognition, contributing to sex differences in behavior. Second, females respond differently to stress than males which might be related to the phase of the estrous cycle. For example, female rats and mice express less anxiety than males in a novel environment. Proestrus females are less anxious than females in the other estrous phases. Third, males perform in spatial tasks superior to females. However, while stress impairs spatial memory in males, females improve their spatial abilities, depending on the task and kind of stressor. We conclude that the differences in emotion, cognition and responses to stress between males and females over the different phases of the estrous cycle should be used in animal models for stress-related psychiatric disorders

    Conditioned response suppression in the IntelliCage: assessment of mouse strain differences and effects of hippocampal and striatal lesions on acquisition and retention of memory

    Full text link
    The IntelliCage allows fully automated continuous testing of various behaviours in the home cage environment without handling the mice. Here we tested whether conditioned avoidance is retained after a time period delay spent outside the IntelliCage. During the training, nosepokes in one of the four learning corners were punished with an air-puff. After 24h of training, the mice were placed in regular cages for 24h. During the last 18h of this interval, the mice were water deprived and then returned to the IntelliCage for a probe trial where drinking was allowed in all corners. The C57BL/6 mice developed a significant suppression of nosepoking in the punished corner during training, and the avoidance was carried over to the following probe trial. Repetition of the experiment by delivering punishment in a different corner assigned to individual mice revealed a similar performance pattern. Comparison between the different strains revealed a reduced nosepoke suppression in DBA/2 and B6D2F1 mice as compared to C57BL/6 mice in the probe trial, despite similar error rates during the training with short (1-s) air-puffs. However, the performance of the three strains in the probe trial were equalised when the air-puffs were prolonged until the end of the corner visit. Significant extinction of the nosepoke suppression occurred after 6 days. A prolonged interval (7 days) between the training and the probe trial resulted in a loss of suppression in DBA/2 mice, but not in C57BL/6 and B6D2F1 mice. Additional experiments revealed that performance in the probe trial was dependent on a complex set of intramaze cues. Testing of mice with bilateral excitotoxic lesions of the hippocampus or dorso-lateral striatum revealed that learning this task was dependent on an intact hippocampus, but not on an intact striatum. In summary, the conditioned nosepoke suppression test presented here is sensitive to both genetic differences and hippocampal lesions. This test could be applied to the screening of mutant mice with impaired hippocampal functions more efficiently than those of the standard memory tests. Copyright (c) 2010 Elsevier B.V. All rights reserved
    corecore