147 research outputs found

    High-Energy and High-Power-Density Potassium Ion Batteries Using Dihydrophenazine-Based Polymer as Active Cathode Material

    Full text link
    Polymeric aromatic amines were shown to be very promising cathodes for lithium-ion batteries. Surprisingly, these materials are scarcely used for designing post-lithium batteries. In this Letter, we investigate the application of the high-voltage poly(N-phenyl-5,10-dihydrophenazine) (p-DPPZ) cathodes for K-ion batteries. The designed batteries demonstrate an impressive specific capacity of 162 mAh g-1 at the current density of 200 mA g-1, operate efficiently at high current densities of 2-10 A g-1, enabling charge and discharge within ∼1-4 min, and deliver the specific capacity of 125-145 mAh g-1 with a retention of 96 and 79% after 100 and 1000 charge-discharge cycles, respectively. Finally, these K-ion batteries with polymeric p-DPPZ cathodes showed rather outstanding specific power of >3 × 104 W kg-1, thus paving a way to the design of ultrafast and durable high-capacity metal-ion batteries matching the increasing demand for high power and high energy density electrochemical energy storage devices. © 2019 American Chemical Society.Government Council on Grants, Russian Federation: 02.Russian Science Foundation, RSF: 16-13-00111This work was supported by Russian Science Foundation, project 16-13-00111. We acknowledge the support of Dr. A. Mumyatov with FTIR spectroscopy measurements. The XPS measurements were supported by the Government of Russian Federation (Act 211, Agreement No. 02.A03.21.0006) and Theme “Electron” (no. AAAA-A18-118020190098-5)

    Pseudogap phase formation in the crossover from Bose-Einstein condensation to BCS superconductivity

    Full text link
    A phase diagram for a 2D metal with variable carrier density has been derived. It consists of a normal phase, where the order parameter is absent; a so-called ``abnormal normal'' phase where this parameter is also absent but the mean number of composite bosons (bound pairs) exceeds the mean number of free fermions; a pseudogap phase where the absolute value of the order parameter gradually increases but its phase is a random value, and finally a superconducting (here Berezinskii-Kosterlitz-Thouless) phase. The characteristic transition temperatures between these phases are found. The chemical potential and paramagnetic susceptibility behavior as functions of the fermion density and the temperature are also studied. An attempt is made to qualitatively compare the resulting phase diagram with the features of underdoped high-TcT_{c} superconducting compounds above their critical temperature.Comment: 26 pages, revtex, 5 EMTeX figures; more discussion and references added; to be published in JET

    Flight validation of ground-based assessment for control power requirements at high angles of attack

    Get PDF
    A review is presented in viewgraph format of an ongoing NASA/U.S. Navy study to determine control power requirements at high angles of attack for the next generation high-performance aircraft. This paper focuses on recent flight test activities using the NASA High Alpha Research Vehicle (HARV), which are intended to validate results of previous ground-based simulation studies. The purpose of this study is discussed, and the overall program structure, approach, and objectives are described. Results from two areas of investigation are presented: (1) nose-down control power requirements and (2) lateral-directional control power requirements. Selected results which illustrate issues and challenges that are being addressed in the study are discussed including test methodology, comparisons between simulation and flight, and general lessons learned

    Nonperturbative XY-model approach to strong coupling superconductivity in two and three dimensions

    Full text link
    For an electron gas with delta-function attraction we investigate the crossover from weak- to strong-coupling supercoductivity in two and three dimensions. We derive analytic expressions for the stiffness of phase fluctuations and set up effective XY-models which serve to determine nonperturbatively the temperature of phase decoherence where superconductivity breaks down. We find the transition temperature T_c as a monotonous function of the coupling strength and carrier density both in two and three dimensions, and give analytic formulas for the merging of the temperature of phase decoherence with the temperature of pair formation in the weak-coupling limit.Comment: Few typos corrected. Emails that were sent to the address [email protected] in June and July 1999 were lost in a computer crash, so if your comments were not answered please send them once mor

    Ginzburg-Landau theory of superconductors with short coherence length

    Full text link
    We consider Fermions in two dimensions with an attractive interaction in the singlet d-wave channel of arbitrary strength. By means of a Hubbard-Stratonovich transformation a statistical Ginzburg-Landau theory is derived, which describes the smooth crossover from a weak-coupling BCS superconductor to a condensate of composite Bosons. Adjusting the interaction strength to the observed slope of H_c2 at T_c in the optimally doped high-T_c compounds YBCO and BSCCO, we determine the associated values of the Ginzburg-Landau correlation length xi and the London penetration depth lambda. The resulting dimensionless ratio k_F xi(0) approx 5-8 and the Ginzburg-Landau parameter kappa=lambda xi approx 90-100 agree well with the experimentally observed values. These parameters indicate that the optimally doped materials are still on the weak coupling side of the crossover to a Bose regime.Comment: 12 pages, RevTeX, 6 postscript figures, resubmitted with minor changes in section III, to appear in Physical Review

    Essential and checkpoint functions of budding yeast ATM and ATR during meiotic prophase are facilitated by differential phosphorylation of a meiotic adaptor protein, Hop1

    Get PDF
    A hallmark of the conserved ATM/ATR signalling is its ability to mediate a wide range of functions utilizing only a limited number of adaptors and effector kinases. During meiosis, Tel1 and Mec1, the budding yeast ATM and ATR, respectively, rely on a meiotic adaptor protein Hop1, a 53BP1/Rad9 functional analog, and its associated kinase Mek1, a CHK2/Rad53-paralog, to mediate multiple functions: control of the formation and repair of programmed meiotic DNA double strand breaks, enforcement of inter-homolog bias, regulation of meiotic progression, and implementation of checkpoint responses. Here, we present evidence that the multi-functionality of the Tel1/Mec1-to-Hop1/Mek1 signalling depends on stepwise activation of Mek1 that is mediated by Tel1/Mec1 phosphorylation of two specific residues within Hop1: phosphorylation at the threonine 318 (T318) ensures the transient basal level Mek1 activation required for viable spore formation during unperturbed meiosis. Phosphorylation at the serine 298 (S298) promotes stable Hop1-Mek1 interaction on chromosomes following the initial phospho-T318 mediated Mek1 recruitment. In the absence of Dmc1, the phospho-S298 also promotes Mek1 hyper-activation necessary for implementing meiotic checkpoint arrest. Taking these observations together, we propose that the Hop1 phospho-T318 and phospho-S298 constitute key components of the Tel1/Mec1- based meiotic recombination surveillance (MRS) network and facilitate effective coupling of meiotic recombination and progression during both unperturbed and challenged meiosis

    Budding yeast ATM/ATR control meiotic double-strand break (DSB) levels by down-regulating Rec114, an essential component of the DSB-machinery

    Get PDF
    An essential feature of meiosis is Spo11 catalysis of programmed DNA double strand breaks (DSBs). Evidence suggests that the number of DSBs generated per meiosis is genetically determined and that this ability to maintain a pre-determined DSB level, or "DSB homeostasis", might be a property of the meiotic program. Here, we present direct evidence that Rec114, an evolutionarily conserved essential component of the meiotic DSB-machinery, interacts with DSB hotspot DNA, and that Tel1 and Mec1, the budding yeast ATM and ATR, respectively, down-regulate Rec114 upon meiotic DSB formation through phosphorylation. Mimicking constitutive phosphorylation reduces the interaction between Rec114 and DSB hotspot DNA, resulting in a reduction and/or delay in DSB formation. Conversely, a non-phosphorylatable rec114 allele confers a genome-wide increase in both DSB levels and in the interaction between Rec114 and the DSB hotspot DNA. These observations strongly suggest that Tel1 and/or Mec1 phosphorylation of Rec114 following Spo11 catalysis down-regulates DSB formation by limiting the interaction between Rec114 and DSB hotspots. We also present evidence that Ndt80, a meiosis specific transcription factor, contributes to Rec114 degradation, consistent with its requirement for complete cessation of DSB formation. Loss of Rec114 foci from chromatin is associated with homolog synapsis but independent of Ndt80 or Tel1/Mec1 phosphorylation. Taken together, we present evidence for three independent ways of regulating Rec114 activity, which likely contribute to meiotic DSBs-homeostasis in maintaining genetically determined levels of breaks

    Exploring Coumarin-Based Boron Emissive Complexes as Temperature Thermometers in Polymer-Supported Materials

    Get PDF
    Three coumarin-based boron complexes (L1, L2 and L3) were designed and successfully incorporated into polymeric matrixes for evaluation as temperature probes. The photophysical properties of the complexes were carried out in different solvents and in the solid state. In solution, compound L1 exhibited the highest fluorescence quantum yield, 33%, with a positive solvatochromism also being observed on the absorption and emission when the polarity of the solvent increased. Additionally in the presence of anions, L1 showed a colour change from yellow to pink, followed by a quenching in the emission intensity, which is due to deprotonation with the formation of a quinone base. Absorption and fluorescence spectra of L1 were calculated at different temperatures by the DFT/B3LYP method. The decrease in fluorescence of compound L1 with an increase in temperature seems to be due to the presence of pronounced torsional vibrations of the donor and acceptor fragments relative to the single bond with C(carbonyl)-C (styrene fragment). L1, L2 and L3, through their incorporation into the polymeric matrixes, became highly emissive by aggregation. These dye@doped polymers were evaluated as temperature sensors, showing an excellent fluorescent response and reversibility after 15 cycles of heating and cooling

    The Gaia-ESO Survey: A new diagnostic for accretion and outflow activity in the young cluster NGC 2264

    Get PDF
    Context. NGC 2264 is a young cluster whose accretion properties can be investigated in detail by taking advantage of the FLAMES data in the context of the Gaia-ESO Survey. In fact, the analysis of the Hα emission line profile can provide us with information about the accretion and ejection activity of young stars. However, a strong nebular emission that contributes to the Hα emission can alter the profiles, with consequences for their physical interpretation. Aims. Our study is aimed at investigating the accretion and ejection properties of NGC 2264 by applying a proper treatment of the sky contribution to the Hα and forbidden emission lines (FELs; [SII] and [NII] doublets). Methods. We developed a tool, the OHαNA-method, to handle the strong nebular contribution and spectra with spurious profiles of the Hα and FELs, namely altered Hα profiles or absorption features artificially created where emission lines (FELs) are expected. We derived the quantitative measurements of relevant parameters to describe the accretion and ejection processes in young members of NGC 2264, focusing on reliable quantities derived from the width of the lines, which is relatively unaffected by the nebular emission, unlike the intensity peak, which can be altered significantly. Results. We derive the quantitative measurements related to the Hα emission line and discuss the comparison between the original and sky-subtracted spectra. We thus reveal possible profile alterations with consequences for their physical interpretation. Furthermore, we show the analysis of the variability for multi-epoch observations, also deriving the velocity of the infalling and outflowing plasma from the wings of the broad Hα emission line (in accreting stars). We also explore the mass accretion rate versus full width at zero intensity of the Hα line, namely Ṁ versus FWZI(Hα), a correlation based on the width of the emission line, which is expected to be more robust with respect to any measurement derived from the peak (e.g., Hα10%) and possibly altered by the nebular contribution. Conclusions. We are able to ascertain that more than 20% of the confirmed accretors, which have already been identified in NGC 2264, are affected by the alteration of their line profiles due to the contribution of the nebular emission. Therefore, this is an important issue to consider when investigating accretion and ejection processes in young stellar clusters. While a small fraction of spectra can be unequivocally classified as either unaffected by nebular emission or dominated by nebular emission, the majority (&gt; 90%) represent intermediate cases whose spectral features have to be investigated in detail to derive reliable measurements of the relevant parameters and their physical implications.</jats:p

    The GALAH survey: Multiple stars and our Galaxy. I. A comprehensive method for deriving properties of FGK binary stars

    Get PDF
    Binary stellar systems form a large fraction of the Galaxy's stars. They are useful as laboratories for studying the physical processes taking place within stars, and must be correctly taken into account when observations of stars are used to study the structure and evolution of the Galaxy. We present a sample of 12760 well-characterised double-lined spectroscopic binaries that are appropriate for statistical studies of the binary populations. They were detected as SB2s using a t-distributed stochastic neighbour embedding (t-SNE) classification and a cross-correlation analysis of GALAH spectra. This sample consists mostly of dwarfs, with a significant fraction of evolved stars and several dozen members of the giant branch. To compute parameters of the primary and secondary star (Teff[1,2]T_{\rm eff[1,2]}, logg[1,2]\log g_{[1,2]}, [Fe/H], Vr[1,2]V_{r[1,2]}, vmic[1,2]v_{\rm mic[1,2]}, vbroad[1,2]v_{\rm broad[1,2]}, R[1,2]R_{[1,2]}, and E(BV)E(B-V)), we used a Bayesian approach that includes a parallax prior from Gaia DR2, spectra from GALAH, and apparent magnitudes from APASS, Gaia DR2, 2MASS, and WISE. The derived stellar properties and their distributions show trends that are expected for a population of close binaries (a << 10 AU) with mass ratios 0.5q10.5 \leq q \leq 1. The derived metallicity of these binary stars is statistically lower than that of single dwarf stars from the same magnitude-limited sample.Comment: Accepted for publication in A&
    corecore