25 research outputs found

    Characterization of the emitting and absorbing media around the nucleus of the active galaxy UGC11763 using XMM-Newton data

    Get PDF
    Aims. The detailed analysis of all data taken by the XMM-Newton satellite of UGC11763 to characterize the different components that are emitting and absorbing radiation in the vicinity of the active nucleus. Methods. The continuum emission was studied through the EPIC spectra taking profit of the spectral range of these cameras. The high resolution RGS spectra were analyzed in order to characterize the absorbing features and the emission line features that arise in the spectra of this source. Results. A power law with a photon index \Gamma = 1.72^{+0.03}_{-0.01} accounts for the continuum emission of this source in the hard X-rays from 10 down to 1 keV. At lower energies, a black body model with kT= 0.100\pm 0.003 keV provides a good description of the observed soft excess. The absorption signatures in the spectra of UGC11763 are consistent with the presence of a two phase ionized material (log U=1.65^{+0.07}_{-0.08}; 2.6\pm 0.1 and log N_{H} = 21.2\pm 0.2; 21.51\pm 0.01 cm^{-2}, respectively) in the line of sight. The physical conditions found are consistent with the two phases being in pressure equilibrium. The low ionization component is more ionized than typically found for warm absorbers in other Seyfert 1 galaxies. There are also signatures of some emission lines: Ovii Heα\alpha(r), Ovii Heα\alpha(f), a blend of the Neix Heα\alpha triplet and Fexviii at \lambda 17.5 \AA.Comment: 11 pages, 10 figures, accepted to be published by A&

    X-ray Absorption and Reflection in Active Galactic Nuclei

    Full text link
    X-ray spectroscopy offers an opportunity to study the complex mixture of emitting and absorbing components in the circumnuclear regions of active galactic nuclei, and to learn about the accretion process that fuels AGN and the feedback of material to their host galaxies. We describe the spectral signatures that may be studied and review the X-ray spectra and spectral variability of active galaxies, concentrating on progress from recent Chandra, XMM-Newton and Suzaku data for local type 1 AGN. We describe the evidence for absorption covering a wide range of column densities, ionization and dynamics, and discuss the growing evidence for partial-covering absorption from data at energies > 10 keV. Such absorption can also explain the observed X-ray spectral curvature and variability in AGN at lower energies and is likely an important factor in shaping the observed properties of this class of source. Consideration of self-consistent models for local AGN indicates that X-ray spectra likely comprise a combination of absorption and reflection effects from material originating within a few light days of the black hole as well as on larger scales. It is likely that AGN X-ray spectra may be strongly affected by the presence of disk-wind outflows that are expected in systems with high accretion rates, and we describe models that attempt to predict the effects of radiative transfer through such winds, and discuss the prospects for new data to test and address these ideas.Comment: Accepted for publication in the Astronomy and Astrophysics Review. 58 pages, 9 figures. V2 has fixed an error in footnote

    Very Light Magnetized Jets on Large Scales - I. Evolution and Magnetic Fields

    Get PDF
    Magnetic fields, which are undoubtedly present in extragalactic jets and responsible for the observed synchrotron radiation, can affect the morphology and dynamics of the jets and their interaction with the ambient cluster medium. We examine the jet propagation, morphology and magnetic field structure for a wide range of density contrasts, using a globally consistent setup for both the jet interaction and the magnetic field. The MHD code NIRVANA is used to evolve the simulation, using the constrained-transport method. The density contrasts are varied between \eta = 10^{-1} and 10^{-4} with constant sonic Mach number 6. The jets are supermagnetosonic and simulated bipolarly due to the low jet densities and their strong backflows. The helical magnetic field is largely confined to the jet, leaving the ambient medium nonmagnetic. We find magnetic fields with plasma \beta \sim 10 already stabilize and widen the jet head. Furthermore they are efficiently amplified by a shearing mechanism in the jet head and are strong enough to damp Kelvin-Helmholtz instabilities of the contact discontinuity. The cocoon magnetic fields are found to be stronger than expected from simple flux conservation and capable to produce smoother lobes, as found observationally. The bow shocks and jet lengths evolve self-similarly. The radio cocoon aspect ratios are generally higher for heavier jets and grow only slowly (roughly self-similar) while overpressured, but much faster when they approach pressure balance with the ambient medium. In this regime, self-similar models can no longer be applied. Bow shocks are found to be of low excentricity for very light jets and have low Mach numbers. Cocoon turbulence and a dissolving bow shock create and excite waves and ripples in the ambient gas. Thermalization is found to be very efficient for low jet densities.Comment: 20 pages, 29 figures. Accepted for publication in MNRA

    Meniscal tear—a feature of osteoarthritis

    Full text link

    Adenine nucleotides and inhibition of protein synthesis in isolated hepatocytes incubated under different pO2 levels.

    No full text
    Hepatocytes incubated at a pO2 of 0 mm Hg (N2/CO2, 95%/5%) loose their intracellular ATP content and their ability to synthesize RNA and proteins. Protein synthesis is virtually inhibited from the beginning of the incubation, while ATP content is gradually lost, thus suggesting a primary response of the cell to the absence of O2 rather than to ATP depletion. Such an early decrease of protein synthesis (as estimated as the incorporation of [14C]Leu into cell proteins) is unlikely the result of inhibition of amino acids uptake, enhanced protein degradation, or decreased RNA synthesis. Reoxygenation of such previously hypoxic cells with O2/CO2 at 95%/5% (pO2 of 700 mm Hg), leads to the recovery of both ATP and protein synthesis, even better the hypoxic period is not longer than 30 min. In hepatocytes incubated for 30 min under a pO2 of 700, 80, or 50 mm Hg, cell survival and ADP content are almost identical. Incorporation of radiolabelled leucine is linear in cells incubated under 700 mm Hg O2, but it rather stops at a pO2 of 80 or 50 mm Hg. The time course of both ATP and GTP content behaves in a similar way: it is fairly constant at a pO2 of 700 mm Hg, but a depletion is initiated after 20 min of incubation at a pO2 of 50 or 80 mm Hg. Finally, incubation of hepatocytes either at 700 or 0 mm Hg O2, in the presence of fructose (10 mM), shows that ATP content is maintained at the same level whatever the pO2 level. AMP content is increased only in cells incubated at 0 mm Hg O2 in the absence of fructose. Incorporation of radiolabelled leucine is stopped in such hypoxic cells incubated or not in the presence of fructose. From these results it appears that the presence or the absence of O2 might represent a turn on/off signal to which hepatocytes respond immediately by important metabolic changes like the inhibition of protein synthesis

    EGR-1 enhances tumor growth and modulates the effect of the Wilms' tumor 1 gene products on tumorigenicity

    No full text
    The Wilms' tumor 1 gene (WT1) encodes a transcription factor of the zinc-finger family and is homozygously mutated or deleted in a subset of Wilms' tumors. Through alternative mRNA splicing, the gene is expressed as four main polypeptides that differ by a stretch of 17 amino acids just N-terminal of the four zinc-fingers and three amino acids between zinc fingers 3 and 4. We have previously shown that expression of the WT1(-/-) isoform, lacking both inserts, increases the tumor growth rate of the adenovirus-transformed baby rat kidney (AdBRK) cell line 7C3H2, whereas expression of the WT1(-/+) isoform, lacking the 17aa insert, strongly suppresses the tumorigenic phenotype. In the present study we show that expression of these splice variants does not affect the tumorigenic potential of the similar AdBRK cell line, 7C1T1. In contrast to the 7C3H2 cell line, this AdBRK cell line expresses high endogenous levels of EGR-1 (early growth response-1) protein, a transcription factor structurally related to WT1. Ectopic expression of EGR-1 in the 7C3H2 AdBRK cells significantly increases their in vivo growth rate and nullifies the tumor suppressor activity of the WT1(-/+) protein. Furthermore, we find that EGR-1 levels are elevated in some Wilms' tumors. These data are the first to show that EGR-1 overexpression causes enhanced tumor growth and that WT1 and EGR-1 exert antagonizing effects on growth regulation in baby rat kidney cells, which might reflect the situation in some Wilms' tumors
    corecore