125 research outputs found

    Climate variability of Southern Chile since the Last Glacial Maximum: a continuous sedimentological record from Lago Puyehue (40°S)

    Get PDF
    A key region to study high resolution climate changes of the Southern Hemisphere is undoubtedly the southern part of Chile because it has the advantage to be far removed from the Northern Hemisphere ice sheets and thermohaline circulation influences. In order to reconstruct the regional climate evolution since the Last Glacial Maximum, we investigated the sedimentary infilling of Lago Puyehue (40°S, 164 km2, elevation 185 m) by a multi-proxy analyse of a 11 m long core. Sediments from this core are transported by interflow currents and are made of finely laminated silts, with only small disturbances due to volcanic and seismic activities. Several proxies were measured: grain-size, mineralogy, magnetic susceptibility, major elements geochemistry and biogenic silica concentration. These are used to reconstruct paleo-precipitation and paleo-productivity changes around 40°S. Results evidence that sediment grainsize is highly correlated with the biogenic sediment content and can be used as a proxy for lake paleoproductivity. On the other hand, the magnetic susceptibility signal is highly correlated with the aluminium and titanium concentrations and can be used as a proxy for the terrigenous supply. Temporal variations of sediment composition demonstrate that, since the Last Glacial Maximum, the Chilean Lake District was characterized by 3 abrupt climate changes superimposed on a long term climate evolution. These rapid climate changes are: (1) the end of the Last Glacial Maximum at 17,300 cal. yr. BP; (2) a 13,100-12,300 cal. yr. BP cold event, ending rapidly and interpreted as the local counter part of the European Younger Dryas event, and (3) a 3400-2900 cal. yr. BP climatic instability related to low solar activity. The timing of the 13,100-12,300 cold event is compared with similar records in both hemispheres and demonstrates that this Southern Hemisphere climate change lags behind the Northern Hemisphere Younger Dryas cold period by 500 to 1000 years

    Paleoproductivity of Puyehue Lake (Southern Chile) during the last millenium: climatic significance

    Get PDF
    Southern Chile is a key site for the understanding of past climatic variations since it is influenced by the El Nino Southern Oscillation (ENSO). We investigated high resolution climate changes during the last millennium by a multi-proxy analyse of short cores (60 cm long) collected in Puyehue lake (40°S): magnetic susceptibility, grain-size, mineralogy, density, gamma-density, LOI, biogenic silica content and bulk XRF geochemistry. According to age-depth model (210Pb, 137Cs and varve counting - Boës et al., this session), the cores cover the last 600 yr. The sediment is characterized by volcanic minerals and a high diatom content, due to the important lacustrine silica supply characteristic of volcanic environments. Moreover, the active volcanism of the Chilean Lake District is responsible of a high number of tephra deposits. Our main aim is to quantify biogenic particles fluxes throughout the last millennium by Na2CO3 dissolution and by normative calculation based on bulk XRF analyses. The result shows that volcanic eruptions do not influence the biogenic productivity of the lake. From 1400 to 1880 yr. AD, paleoproductivity shows a global trend from low to high biogenic production. Important paleoproductivity changes are observed over the last 120 yr. Results are compared with historical data and discussed in terms of climate changes and/or anthropic influence

    Numerical continuation in nonlinear experiments using local Gaussian process regression

    Get PDF
    Control-based continuation (CBC) is a general and systematic method to probe the dynamics of nonlinear experiments. In this paper, CBC is combined with a novel continuation algorithm that is robust to experimental noise and enables the tracking of geometric features of the response surface such as folds. The method uses Gaussian process regression to create a local model of the response surface on which standard numerical continuation algorithms can be applied. The local model evolves as continuation explores the experimental parameter space, exploiting previously captured data to actively select the next data points to collect such that they maximise the potential information gain about the feature of interest. The method is demonstrated experimentally on a nonlinear structure featuring harmonically coupled modes. Fold points present in the response surface of the system are followed and reveal the presence of an isola, i.e. a branch of periodic responses detached from the main resonance peak

    The search for magnetic fields in mercury-manganese stars

    Full text link
    We performed a highly sensitive search for magnetic fields on a large set of HgMn stars. With the aid of a new polarimeter attached to the HARPS spectrometer at the ESO 3.6m-telescope, we obtained high-quality circular polarization spectra of 41 single and double HgMn stars. Using a multi-line analysis technique on each star, we co-added information from hundreds of spectral lines resulting in significantly greater sensitivity to the presence of magnetic fields, including very weak fields. For the 47 individual objects studied, including 6 components of SB2 systems, we do not detect any magnetic fields at greater than the 3 sigma level. The lack of detection in the circular polarization profiles indicates that if strong fields are present on these stars, they must have complex surface topologies. For simple global fields, our detection limits imply upper limits to the fields present of 2-10 Gauss in the best cases. We conclude that HgMn stars lack large-scale magnetic fields, typical for spotted magnetic Ap stars, sufficient to form and sustain the chemical spots observed on HgMn stars. Our study confirms that in addition to magnetically altered atomic diffusion, there exists another differentiation mechanism operating in the atmospheres of late-B main sequence stars which can compositional inhomogeneities on their surfaces.Comment: 12 pages, 8 figures, 2 table

    Searching for links between magnetic fields and stellar evolution. II. The evolution of magnetic fields as revealed by observations of Ap stars in open clusters and associations

    Full text link
    The evolution of magnetic fields in Ap stars during the main sequence phase is presently mostly unconstrained by observation because of the difficulty of assigning accurate ages to known field Ap stars. We are carrying out a large survey of magnetic fields in cluster Ap stars with the goal of obtaining a sample of these stars with well-determined ages. In this paper we analyse the information available from the survey as it currently stands. We select from the available observational sample the stars that are probably (1) cluster or association members and (2) magnetic Ap stars. For the stars in this subsample we determine the fundamental parameters T_eff, log(L/L_o), and M/M_o. With these data and the cluster ages we assign both absolute age and fractional age (the fraction of the main sequence lifetime completed). For this purpose we have derived new bolometric corrections for Ap stars. Magnetic fields are present at the surfaces of Ap stars from the ZAMS to the TAMS. Statistically for the stars with M > 3 M_o the fields decline with advancing age approximately as expected from flux conservation together with increased stellar radius, or perhaps even faster than this rate, on a time scale of about 3 10^7 yr. In contrast, lower mass stars show no compelling evidence for field decrease even on a timescale of several times 10^8 yr. Study of magnetic cluster stars is now a powerful tool for obtaining constraints on evolution of Ap stars through the main sequence. Enlarging the sample of known cluster magnetic stars, and obtaining more precise RMS fields, will help to clarify the results obtained so far. Further field observations are in progress.Comment: Accepted by Astronomy & Astrophysic

    The radius and effective temperature of the binary Ap star beta CrB from CHARA/FLUOR and VLT/NACO observations

    Full text link
    The prospects for using asteroseismology of rapidly oscillating Ap (roAp) stars are hampered by the large uncertainty in fundamental stellar parameters. Results in the literature for the effective temperature (Teff) often span a range of 1000 K. Our goal is to reduce systematic errors and improve the Teff calibration of Ap stars based on new interferometric measurements. We obtained long-baseline interferometric observations of beta CrB using the CHARA/FLUOR instrument. To disentangle the flux contributions of the two components of this binary star, we obtained VLT/NACO adaptive optics images. We determined limb darkened angular diameters of 0.699+-0.017 mas for beta CrB A (from interferometry) and 0.415+-0.017 mas for beta CrB B (from surface brightness- color relations), corresponding to radii of 2.63+-0.09 Rsun (3.4 percent uncertainty) and 1.56+-0.07 Rsun (4.5 percent). The combined bolometric flux of the A and B components was determined from satellite UV data, spectrophotometry in the visible and broadband data in the infrared. The flux from the B component constitutes 16+-4 percent of the total flux and was determined by fitting an ATLAS9 model atmosphere to the broad-band NACO J and K magnitudes. Combining the flux of the A component with its measured angular diameter, we determine the effective temperature Teff(A) = 7980+-180 K (2.3 percent). Our new interferometric and imaging data enable a nearly model-independent determination of the effective temperature of beta CrB A. Including our recent study of alpha Cir, we now have direct Teff measurements of two of the brightest roAp stars, providing a strong benchmark for an improved calibration of the Teff scale for Ap stars. This will support the use of potentially strong constraints imposed by asteroseismic studies of roAp stars.Comment: 7 pages, accepted by A&

    Seatbelt use and risk of major injuries sustained by vehicle occupants during motor-vehicle crashes: A systematic review and meta-analysis of cohort studies

    Get PDF
    BackgroundIn 2004, a World Health Report on road safety called for enforcement of measures such as seatbelt use, effective at minimizing morbidity and mortality caused by road traffic accidents. However, injuries caused by seatbelt use have also been described. Over a decade after publication of the World Health Report on road safety, this study sought to investigate the relationship between seatbelt use and major injuries in belted compared to unbelted passengers.MethodsCohort studies published in English language from 2005 to 2018 were retrieved from seven databases. Critical appraisal of studies was carried out using the Scottish Intercollegiate Guidelines Network (SIGN) checklist. Pooled risk of major injuries was assessed using the random effects meta-analytic model. Heterogeneity was quantified using I-squared and Tau-squared statistics. Funnel plots and Egger's test were used to investigate publication bias. This review is registered in PROSPERO (CRD42015020309).ResultsEleven studies, all carried out in developed countries were included. Overall, the risk of any major injury was significantly lower in belted passengers compared to unbelted passengers (RR 0.47; 95%CI, 0.29 to 0.80; I-2=99.7; P=0.000). When analysed by crash types, belt use significantly reduced the risk of any injury (RR 0.35; 95%CI, 0.24 to 0.52). Seatbelt use reduces the risk of facial injuries (RR=0.56, 95% CI=0.37 to 0.84), abdominal injuries (RR=0.87; 95% CI=0.78 to 0.98) and, spinal injuries (RR=0.56, 95% CI=0.37 to 0.84). However, we found no statistically significant difference in risk of head injuries (RR=0.49; 95% CI=0.22 to 1.08), neck injuries (RR=0.69: 95%CI 0.07 to 6.44), thoracic injuries (RR 0.96, 95%CI, 0.74 to 1.24), upper limb injuries (RR=1.05, 95%CI 0.83 to 1.34) and lower limb injuries (RR=0.77, 95%CI 0.58 to 1.04) between belted and non-belted passengers.ConclusionIn sum, the risk of most major road traffic injuries is lower in seatbelt users. Findings were inconclusive regarding seatbelt use and susceptibility to thoracic, head and neck injuries during road traffic accidents. Awareness should be raised about the dangers of inadequate seatbelt use. Future research should aim to assess the effects of seatbelt use on major injuries by crash type

    No magnetic field in the spotted HgMn star mu Leporis

    Full text link
    Chemically peculiar stars of the mercury-manganese (HgMn) type represent a new class of spotted late-B stars, in which evolving surface chemical inhomogeneities are apparently unrelated to the presence of strong magnetic fields but are produced by some hitherto unknown astrophysical mechanism. The goal of this study is to perform a detailed line profile variability analysis and carry out a sensitive magnetic field search for one of the brightest HgMn stars - mu Lep. We acquired a set of very high-quality intensity and polarization spectra of mu Lep with the HARPSpol polarimeter. These data were analyzed with the multiline technique of least-squares deconvolution in order to extract information on the magnetic field and line profile variability. Our spectra show very weak but definite variability in the lines of Sc, all Fe-peak elements represented in the spectrum of mu Lep, as well as Y, Sr, and Hg. Variability might also be present in the lines of Si and Mg. Anomalous profile shapes of Ti II and Y II lines suggest a dominant axisymmetric distribution of these elements. At the same time, we found no evidence of the magnetic field in mu Lep, with the 3 sigma upper limit of only 3 G for the mean longitudinal magnetic field. This is the most stringent upper limit on the possible magnetic field derived for a spotted HgMn star. The very weak variability detected for many elements in the spectrum mu Lep suggests that low-contrast chemical inhomogeneities may be common in HgMn stars and that they have not been recognized until now due to the limited precision of previous spectroscopic observations and a lack of time-series data. The null result of the magnetic field search reinforces the conclusion that formation of chemical spots in HgMn stars is not magnetically driven.Comment: Accepted for publication in Astronomy & Astrophysic

    Discovery of the longest-period rapidly oscillating Ap star HD177765

    Full text link
    We present the discovery of a long-period, rapidly oscillating Ap star, HD177765. Using high-resolution time-series observations obtained with UVES at the ESO VLT telescope, we found radial velocity variations with amplitudes 7-150 m/s and a period of 23.6 min, exceeding that of any previously known roAp star. The largest pulsation amplitudes are observed for Eu III, Ce III and for the narrow core of Halpha. We derived the atmospheric parameters and chemical composition of HD177765, showing this star to be similar to other long-period roAp stars. Comparison with theoretical pulsational models indicates an advanced evolutionary state for HD177765. Abundance analyses of this and other roAp stars suggest a systematic variation with age of the rare-earth line anomalies seen in cool Ap stars.Comment: 5 pages, 2 figures; accepted for publication in MNRA

    Genome-wide data from medieval German Jews show that the Ashkenazi founder event pre-dated the 14th century

    Get PDF
    We report genome-wide data for 33 Ashkenazi Jews (AJ), dated to the 14th century, following a salvageexcavation at the medieval Jewish cemetery of Erfurt, Germany. The Erfurt individuals are geneticallysimilar to modern AJ and have substantial Southern European ancestry, but they show more variabilityin Eastern European-related ancestry than modern AJ. A third of the Erfurt individuals carried the samenearly-AJ-specific mitochondrial haplogroup and eight carried pathogenic variants known to affect AJtoday. These observations, together with high levels of runs of homozygosity, suggest that the Erfurtcommunity had already experienced the major reduction in size that affected modern AJ. However, theErfurt bottleneck was more severe, implying substructure in medieval AJ. Together, our results suggestthat the AJ founder event and the acquisition of the main sources of ancestry pre-dated the 14th centuryand highlight late medieval genetic heterogeneity no longer present in modern AJ
    corecore