409 research outputs found

    Early Detection and Analysis of Leakage Abuse Vulnerabilities

    Get PDF
    In order to be useful in the real world, efficient cryptographic constructions often reveal, or ``leak,\u27\u27 more information about their plaintext than one might desire. Up until now, the approach for addressing leakage when proposing a new cryptographic construction has focused entirely on qualifying exactly what information is leaked. Unfortunately there has been no way to predict what the real-world impact of that leakage will be. In this paper, we argue in favor of an analytical approach for quantifying the vulnerability of leaky cryptographic constructions against attacks that use leakage to recover the plaintext or other sensitive information. In contrast to the previous empirical and ad-hoc approach for identifying and assessing such vulnerabilities, analytical techniques can be integrated much earlier in the design lifecycle of a new construction, and the results of the analysis apply much more broadly across many different kinds of data. We applied the proposed framework to evaluate the leakage profiles of five recent constructions for deterministic and order-revealing encryption. Our analysis discovered powerful attacks against every construction that we analyzed, and with only one possible exception, the attack allows the adversary to recover virtually any plaintext with only an exponentially small probability of error. We hope that these results, together with the proposed analytical framework, will help spur the development of new efficient constructions with improved leakage profiles that meaningfully limit the power of leakage abuse attacks in the real world

    A Sequence of Duals for Sp(2N) Supersymmetric Gauge Theories with Adjoint Matter

    Get PDF
    We consider supersymmetric Sp(2N) gauge theories with F matter fields in the defining representation, one matter field in the adjoint representation, and no superpotential. We construct a sequence of dual descriptions of this theory using the dualities of Seiberg combined with the ``deconfinement'' method introduced by Berkooz. Our duals hint at a new non-perturbative phenomenon that seems to be taking place at asymptotically low energies in these theories: for small F some of the degrees of freedom form massless, non-interacting bound states while the theory remains in an interacting non-Abelian Coulomb phase. This phenomenon is the result of strong coupling gauge dynamics in the original description, but has a simple classical origin in the dual descriptions. The methods used for constructing these duals can be generalized to any model involving arbitrary 2-index tensor representations of Sp(2N), SO(N), or SU(N) groups.Comment: version (with additional references) to appear in Phys. Rev. D, 20 pages, LaTeX, one embedded eps figur

    The purpose of United Nations Security Council practice: Contesting competence claims in the normative context created by the Responsibility to Protect.

    Get PDF
    Practice theory provides important insight into the workings of the Security Council. The contribution is currently limited however by the conjecture that practice theory operates on ‘a different analytical plane’ to norm / normative theory (Adler-Nissen and Pouliot 2014). Building on existing critiques (Duval and Chowdhury 2011; Schindler and Wille 2015) we argue that analyzing practices separately from normative positions risks misappropriating competence and reifying practice that is not fit for purpose. This risk is realized in Adler-Nissen and Pouliot’s (2014) practice based account Libya crisis. By returning the normative context created by the Responsibility to Protect (R2P) to the analytical foreground, and by drawing on a pragmatic conception of 'ethical competence' (Frost 2009), we find that pre-reflexive practices uncritically accepted as markers of competence – e.g. ‘penholding’ – can contribute to the Council’s failure to act collectively in the face of mass atrocity. Drawing on extensive interview material we offer an alternative account of the Libya intervention, finding that the practices of the permanent three (France, UK and US) did not cultivate the kind of collective consciousness that is required to implement R2P. This is further illustrated by an account of the Security Council’s failure in Syria, where the P3’s insistence on regime change instrumentalized the Council at the expense of R2P-appropriate practice. This changed when elected members became ‘penholders’. Practice theory can facilitate learning processes that help the Council meet its responsibilities, but only through an approach that combines its insights with those of norm / normative theory

    The Strength of Weak Randomization: Efficiently Searchable Encryption with Minimal Leakage

    Get PDF
    Efficiently searchable and easily deployable encryption schemes enable an untrusted, legacy service such as a relational database engine to perform searches over encrypted data. The ease with which such schemes can be deployed on top of existing services makes them especially appealing in operational environments where encryption is needed but it is not feasible to replace large infrastructure components like databases or document management systems. Unfortunately all previously known approaches for efficiently searchable encryption are vulnerable to inference attacks where an adversary can use knowledge of the distribution of the data to recover the plaintext with high probability. In this paper, we present the first efficiently searchable, easily deployable database encryption scheme that is provably secure against inference attacks even when used with real, low-entropy data. Ours is also the only efficiently searchable construction that provides any provable security for protecting multiple related attributes (columns) in the same database. Using this ESE construction as a building block, we give an efficient construction for performing range queries over encrypted data. We implemented our constructions in Haskell and used them to query encrypted databases of up to 10 million records. In experiments with a local Postgres database and with a Google Cloud Platform database, the response time for our encrypted queries is not excessively slower than for plaintext queries. With the use of parallel query processing, our encrypted queries can achieve similar and in some cases superior performance to queries on the plaintext

    Persistence of balsam fir and black spruce populations in the mixedwood and coniferous bioclimatic domain of eastern North America

    Get PDF
    The boreal ecocline (ca 49°N) between the southern mixedwood (dominated by balsam fir) and the northern coniferous bioclimatic domain (dominated by black spruce) may be explained by a northward decrease of balsam fir regeneration, explaining the gradual shift to black spruce dominance. 7,010 sample plots, with absence of major disturbances, were provided by the Quebec Ministry of Forest, Fauna, and Parks. The regeneration (sapling abundance) of balsam fir and black spruce were compared within and between the two bioclimatic domains, accounting for parental trees, main soil type (clay and till) and climate conditions, reflected by summer growing degree-days above 5°C (GDD_5), total summer precipitation (May–August; PP_MA). Parental trees and soil type determined balsam fir and black spruce regeneration. Balsam fir and black spruce, respectively, showed higher regeneration in the mixedwood and the coniferous bioclimatic domains. Overall, higher regeneration was obtained on till for balsam fir, and on clay soils for black spruce. GDD_5 and PP_MA were beneficial for balsam fir regeneration on clay and till soils, respectively, while they were detrimental for black spruce regeneration. At a population level, balsam fir required at least 28% of parental tree basal area in the mixedwood, and 38% in the coniferous bioclimatic domains to maintain a regeneration at least equal to the mean regeneration of the whole study area. However, black spruce required 82% and 79% of parental trees basal area in the mixedwood and the coniferous domains, respectively. The northern limit of the mixedwood bioclimatic domain was attributed to a gradual decrease toward the north of balsam fir regeneration most likely due to cooler temperatures, shorter growing seasons, and decrease of the parental trees further north of this northern limit. However, balsam fir still persists above this northern limit, owing to a patchy occurrence of small parental trees populations, and good establishment substrates

    Can Quantum de Sitter Space Have Finite Entropy?

    Get PDF
    If one tries to view de Sitter as a true (as opposed to a meta-stable) vacuum, there is a tension between the finiteness of its entropy and the infinite-dimensionality of its Hilbert space. We invetsigate the viability of one proposal to reconcile this tension using qq-deformation. After defining a differential geometry on the quantum de Sitter space, we try to constrain the value of the deformation parameter by imposing the condition that in the undeformed limit, we want the real form of the (inherently complex) quantum group to reduce to the usual SO(4,1) of de Sitter. We find that this forces qq to be a real number. Since it is known that quantum groups have finite-dimensional representations only for q=q= root of unity, this suggests that standard qq-deformations cannot give rise to finite dimensional Hilbert spaces, ruling out finite entropy for q-deformed de Sitter.Comment: 10 pages, v2: references added, v3: minor corrections, abstract and title made more in-line with the result, v4: published versio

    Dicyclic Horizontal Symmetry and Supersymmetric Grand Unification

    Get PDF
    It is shown how to use as horizontal symmetry the dicyclic group Q6⊂SU(2)Q_6 \subset SU(2) in a supersymmetric unification SU(5)⊗SU(5)⊗SU(2)SU(5)\otimes SU(5)\otimes SU(2) where one SU(5)SU(5) acts on the first and second families, in a horizontal doublet, and the other acts on the third. This can lead to acceptable quark masses and mixings, with an economic choice of matter supermultiplets, and charged lepton masses can be accommodated.Comment: 10 pages, LaTe

    A new twist on dS/CFT

    Full text link
    We stress that the dS/CFT correspondence should be formulated using unitary principal series representations of the de Sitter isometry group/conformal group, rather than highest-weight representations as originally proposed. These representations, however, are infinite-dimensional, and so do not account for the finite gravitational entropy of de Sitter space in a natural way. We then propose to replace the classical isometry group by a q-deformed version. This is carried out in detail for two-dimensional de Sitter and we find that the unitary principal series representations deform to finite-dimensional unitary representations of the quantum group. We believe this provides a promising microscopic framework to account for the Bekenstein-Hawking entropy of de Sitter space.Comment: 21 pages, revtex, v2 references adde

    SQCD: A Geometric Apercu

    Get PDF
    We take new algebraic and geometric perspectives on the old subject of SQCD. We count chiral gauge invariant operators using generating functions, or Hilbert series, derived from the plethystic programme and the Molien-Weyl formula. Using the character expansion technique, we also see how the global symmetries are encoded in the generating functions. Equipped with these methods and techniques of algorithmic algebraic geometry, we obtain the character expansions for theories with arbitrary numbers of colours and flavours. Moreover, computational algebraic geometry allows us to systematically study the classical vacuum moduli space of SQCD and investigate such structures as its irreducible components, degree and syzygies. We find the vacuum manifolds of SQCD to be affine Calabi-Yau cones over weighted projective varieties.Comment: 49 pages, 1 figur

    Flavor Unification and Discrete Nonabelian Symmetries

    Full text link
    Grand unified theories with fermions transforming as irreducible representations of a discrete nonabelian flavor symmetry can lead to realistic fermion masses, without requiring very small fundamental parameters. We construct a specific example of a supersymmetric GUT based on the flavor symmetry Δ(75)\Delta(75) --- a subgroup of SU(3)SU(3) --- which can explain the observed quark and lepton masses and mixing angles. The model predicts tan⁥ÎČ≃2−5\tan\beta \simeq 2-5 and gives a τ\tau neutrino mass mΜ≃Mp/GFMGUT2=10m_\nu\simeq M_p/G_F M_{GUT}^2 = 10 eV, with other neutrino masses much lighter. Combined constraints of light quark masses and perturbative unification place flavor symmetry breaking near the GUT scale; it may be possible to probe these extremely high energies by continuing the search for flavor changing neutral currents.Comment: 24 pages, UCSD-PTH-93-30 (uuencoded file; requires epsf.tex, available from this bulletin board
    • 

    corecore