
The Strength of Weak Randomization:

Efficiently Searchable Encryption with Minimal Leakage

David Pouliot, Scott Griffy, and Charles V. Wright

Portland State University {dpouliot,scog,cvwright}@cs.pdx.edu

November 10, 2017

Abstract

Efficiently searchable and easily deployable encryption schemes enable an untrusted, legacy
service such as a relational database engine to perform searches over encrypted data. The ease
with which such schemes can be deployed on top of existing services makes them especially ap-
pealing in operational environments where encryption is needed but it is not feasible to replace
large infrastructure components like databases or document management systems. Unfortu-
nately all previously known approaches for efficiently searchable encryption are vulnerable to
inference attacks where an adversary can use knowledge of the distribution of the data to recover
the plaintext with high probability.

In this paper, we present the first efficiently searchable, easily deployable database encryption
scheme that is provably secure against inference attacks even when used with real, low-entropy
data. Ours is also the only efficiently searchable construction that provides any provable security
for protecting multiple related attributes (columns) in the same database. Using this ESE
construction as a building block, we give an efficient construction for performing range queries
over encrypted data.

We implemented our constructions in Haskell and used them to query encrypted databases
of up to 10 million records. In experiments with a local Postgres database and with a Google
Cloud Platform database, the response time for our encrypted queries is not excessively slower
than for plaintext queries. With the use of parallel query processing, our encrypted queries can
achieve similar and in some cases superior performance to queries on the plaintext.

1 Introduction

Many organizations today are moving to the cloud, shipping their critical data to servers over which
they have little control. Encrypting data before uploading it into the cloud protects against theft
or accidental disclosure, but standard encryption mechanisms also prevent the cloud service from
performing any useful computation on the client’s behalf. One of the most desirable applications
for encrypted data is search.

The problem of searching on encrypted data involves inherent trade-offs between security, per-
formance, and utility. Here utility includes the expressiveness of queries supported. For example,
a construction that supports a large subset of Structured Query Language (SQL) is more useful
than one that supports only exact-match queries. Another important aspect of utility is the ease
or difficulty of deploying a construction for use in the real world.

1

Homomorphic encryption [15] and oblivious RAM [17, 34] offer very strong guarantees of se-
curity, but their practical performance is limited compared to other, more efficient technqiues like
symmetric searchable encryption (SSE) [33, 16, 13, 11]. Recent SSE schemes support rich queries
[26] and achieve fast performance even on very large data sets [11]. However, their lack of backwards
compatibility with existing services makes them difficult to deploy in real operational environments
[20].

Another parallel line of work has investigated “efficiently searchable” and “efficiently deploy-
able” schemes that enable an untrusted server to efficiently index and search on encrypted data
[6, 4, 7]. The idea is to trade off a little security in exchange for potentially faster performance
and (most importantly) the ability to deploy encryption immediately to protect data stored on
existing cloud services. This approach also frees the encryption developer from needing to worry
about issues of availability, redundancy, performance, scaling, etc., because the underlying cloud
service already takes care of them. The CryptDB system of Popa et al [31] first demonstrated
the potential of this approach for protecting outsourced relational databases. By layering a col-
lection of encryption techniques, including efficiently searchable and order-preserving encryption,
CryptDB supports most SQL queries used by real applications. They achieved near-native per-
formance on queries from a standard database benchmark, storing only ciphertext in a standard
MySQL database. Similar efforts from industry include SAP’s SEEED project [19] and Microsoft’s
Always Encrypted feature in SQL Server 2016 [1].

Unfortunately for most real data, efficiently searchable constructions like deterministic and
order-preserving encryption trade off more than just a little security. Inference attacks have recently
been demonstrated that enable an adversary to recover some or all of the plaintext records if it has
some auxiliary information about their statistical distribution [10, 29, 32, 14, 21, 37, 38]. Given the
power of these attacks, it is reasonable to question whether security is feasible at all for efficiently
searchable and easily deployable encryption. Much to our surprise, it turns out that the answer
is “yes,” it is possible to construct efficiently searchable schemes that achieve provable security
against inference attacks.

1.1 Contributions

In this paper, we present the first efficiently searchable, easily deployable database encryption
scheme that is provably secure against inference attacks even when used with real, low-entropy
data. Ours is also the only efficiently searchable construction that provides any provable security
for protecting multiple related attributes (columns) in the same database. Using this ESE con-
struction as a building block, we give an efficient construction for performing range queries over
encrypted data in an untrusted SQL database. The security of our schemes is tunable with a single
parameter, allowing database owners to choose the most appropriate balance of security versus
runtime performance and space overhead for the demands of their individual applications.

Our core technique is a generalization of a “folklore” encryption technique that we call weakly
randomized encryption (WRE). WRE is a sort of middle ground between deterministic encryption
(DET) and conventional, strongly randomized encryption. DET enables efficient, logarithmic-
time search because it allows a legacy server to create an index from only ciphertexts, but on
the other hand, it provides very little security for real data. Conventional (strongly) randomized
encryption prevents the adversary learning even a single bit about the plaintext [18], but in doing
so, it also precludes the possibility of efficient search. In a weakly randomized encryption, only
a few bits of randomness sampled from a low-entropy distribution are used in each encryption.

2

Our analysis shows that this is sufficient to protect against inference attacks if we choose the
distribution carefully. The trade off is that, in order to perform a WRE encryption, one must know
the probability distribution of the plaintexts. We believe it is not unreasonable to ask that the
data owner must know his data at least as well as the attacker does.

Our constructions are compatible with standard SQL relational databases. They can be de-
ployed immediately on popular cloud service platforms including Google Cloud SQL1 and Amazon
Relational Database Service2. They are efficiently scalable up to databases containing millions
of records. In our experiments, we instantiated an encrypted database of 10 million records on
Google Cloud SQL and queried it from a residential cable modem connection. We performed
equality queries and range queries returning up to 10,000 records. Our encrypted database, in-
cluding its server-generated indices, requires less than twice the space required for the plaintext
DB. Query response time with our construction depends on the choice of security parameter, but
with support for parallel query processing, we can handle many encrypted queries faster than the
plaintext.

Our threat model assumes a passive attacker: we give the adversary access to only the encrypted
data and a source of auxiliary information. We assume he does not have access to the encrypted
queries, the access patterns or return results. We acknowledge that the adversary in this model is
relatively weak compared to the standard adversaries for SSE or ORAM. However, we stress that
attackers who can obtain offline access to the encrypted database, e.g. by SQL injection or by
stealing a backup hard drive, are an important real-world threat. All previous easily deployable,
efficiently searchable schemes fail to achieve even this modest level of security.

The paper is organized as follows. We review related work in Section 2. We introduce our notion
of security for WRE against inference attacks in Section 3. In Section 4 we present the generic
template for a weakly randomized encryption, and then we give sequentially stronger variations
on this idea, leading up to our most secure construction, WRE with Poisson salt allocation. We
discuss the problem of protecting multiple related database columns against inference attack in
Section 5. We show how WRE can be used to support range queries in Section 6. We evaluate the
performance of our new constructions experimentally with real databases in Section 7.

2 Related Work

An efficiently searchable encryption scheme is one that reveals some function of the plaintext in
order to allow logarithmic search time using a legacy database or information retrieval system.
Bellare, Boldyreva, and O’Neill [6] and Amanatidis, Boldyreva and O’Neill [4] proposed and ana-
lyzed deterministic encryption (DET) schemes that are efficiently searchable. Those schemes are
provably secure only when the plaintext database has high min-entropy [6]. An “easily deployable”
efficiently searchable encryption is one that retains (enough of) the expected format of the plaintext
to enable use with an existing cloud service [23] [27].

Order-preserving encryption was first described in 2004 by Agrawal et al., who proposed a
method to encrypt data so that the resulting ciphertexts retain the same ordering as the plaintext
[3]. OPE was first studied formally by Boldyreva, Chenette, Lee, and O’Neill [7]. Boldyreva,
Chenette, and O’Neill introduced the related notion of efficiently orderable encryption [8], in which

1https://cloud.google.com/sql/
2https://aws.amazon.com/rds/

3

a public, efficient function can be used to compare the ciphertexts. The similar notion of order-
revealing encryption was proposed by Boneh et al. [9], and recent works give efficient symmetric
schemes for ORE [12, 28]. The term “property-preserving encryption” is sometimes used to
encapsulate both OPE/ORE and ESE [30].

Deterministic ESE constructions were shown to be insecure against inference attacks [29], [10],
[32]. Even more powerful attacks have been demonstrated against OPE and ORE [29] [14] [22]. A
more recent analysis shows that OPE/ORE and deterministic encryption allow the adversary to
recover almost the entire plaintext database, with high probability, for almost all types of data [38].

Techniques for “bucketizing” search tokens, for example with hash collisions, to reduce informa-
tion leakage have been proposed in encrypted search schemes since their inception [33, 16, 6, 27].
Another line of work also uses bucketization to enable range queries over encrypted data without
the use of ORE [25, 24, 36]. While we do not employ bucketization in this work, we believe that it
could be combined with our techniques to provide even stronger security.

3 Security Definitions

Our security definitions are closely modeled after the standard notion of security against a ciphertext-
only attack, also sometimes called a known ciphertext attack. We extend these in a straightforward
way to capture the idea that, in the cryptanalysis of an encrypted database, it is not the actual
bits of the ciphertext that are useful to the adversary, but the leakage.

The first definition, IND-LOA, essentially states that the adversary can’t learn anything from
observing the leakage, i.e. that the leakage does not reveal anything about the plaintext.

The second definition, ε-IND-LOA, is weaker than the first. It allows the adversary to learn
something from observing the leakage, but limits his advantage to no more than some small ε. Note
that we do not require that ε be negligible. The idea is to admit schemes that fall short of the
stronger definition, but that still provide some quantifiable level of security which may be sufficient
for practical use in (some) real applications.

Adversarial Model. Our model assumes that an attacker obtains all the ciphertext records
from an encrypted database. It also has auxiliary information including the alphabet of plaintext
values M and the probability distribution over M from which the database was generated. It is
allowed to make one query to an encryption oracle, which does not return the ciphertext (as in the
standard ciphertext-only attack) but the leakage associated with the ciphertext. The adversary’s
task is then to use the observed leakage, together with his auxiliary information, to guess which
plaintext was encrypted by the oracle.

Leakage. In an encrypted database, the leakage can come in a few different forms. For example,
deterministic encryption reveals the number of times each record occurs in each column of the
database, and order-revealing encryption also reveals the number of records greater than and less
than each encrypted record. In a database table having more than one encrypted column (ie, in
all real databases), the leakage also includes all information the adversary can observe about the
relationship between columns. For example with DET, this includes how often each ciphertext a
in column 1 occurs together with each ciphertext b in column 2, and so forth for all pairs, triples,
etc. of columns in the table.

4

3.1 Security Game

Let db be the plaintext records of the database. We assume that the records in db are an indepen-
dent and identically distributed sample from probability distribution PM over a finite alphabet of
plaintexts M. Let edb be the encrypted records of the database. Let Aux include the plaintext
values and the plaintext frequencies. Let A be an adversary who has access to edb and Aux. Let
Π = (Gen, Enc, Dec) be an encryption scheme with message space M and key space K.

Indistinguishably Experiment PrivKA,Π

1. Let PM be a probability distribution over M, and let db
$← PM .

2. Let sk ← Gen(K).

3. Let edb← Enc(sk, db).

4. A gets PM and edb

5. A chooses a pair of messages m0,m1 ∈M

6. A uniform bit b ∈ 0, 1 is chosen. Ciphertext c ← Enc(sk,mb) is computed and the leakage
` = L(c, edb) is given to A.

7. A outputs a bit b′

8. The output of the experiment is 1 if b′ = b, and 0 otherwise. We write PrivKA,Π = 1 if the
output of the experiment is 1, and in this case we say that A succeeds.

Definition 1 (Indistinguishability under Leakage-Only Attack (IND-LOA)). We say that the en-
cryption scheme Π with security parameters λ and k has IND-LOA security if, for all probabilistic
polynomial time adversaries A,

Pr[PrivKA,Π] ≤ 1

2
+ negl(k) + negl(λ).

Definition 2 (ε-Indistinguishability under Leakage-Only Attack (ε-IND-LOA)). We say that the
encryption scheme Π has ε-IND-LOA security if, for all probabilistic polynomial time adversaries
A,

Pr[PrivKA,Π] ≤ 1

2
+ ε

Definition 3 (Statistical Distance). The statistical distance ∆ between two random variables X,Y
over a common domain ω is defined as:

∆(X,Y) =
1

2

∑
α∈ω

∣∣∣∣Pr(X = α)− Pr(Y = α)

∣∣∣∣
Two random variables X,Y are said to be ε-close if the statistical distance between them is

at most ε. Variables X,Y are called statistically indistinguishable if ε = negl(α) with security
parameter α.

5

Theorem 3.1 (ε-IND-LOA) Bound). The adversary’s success in distinguishing m0 and m1 in the
IND-LOA game is bounded by the statistical distance of the leakage for the two plaintexts. Let M
be the random variable for the plaintext chosen by the oracle, and let L be the leakage associated
with its ciphertext. Then the encryption is ε-IND-LOA secure with

ε =
1

2
∆
(
Pr(L|M = m0), P r(L|M = m1)

)
Note that Theorem 3.1 holds even for encryptions that allow the adversary to guess with nearly-

perfect accuracy, i.e. ε ≈ 1
2 . Examples of such schemes include DET and OPE [38]. The goal in

this work is to show the existence of efficiently deployable schemes that give an ε-IND-LOA bound
with ε much closer to zero.

4 Weakly Randomized Encryption

In this section we formalize and extend a “folklore” technique that we call weakly randomized
encryption (WRE). The idea is that we can reduce the vulnerability of deterministic encryption to
frequency analysis and other leakage abuse attacks by adding a small amount of randomness to the
encryption. In Algorithm 1 we show how the WRE encryption, decryption, and search functions
can be constructed from a DET scheme with encryption function E and decryption function D.

The WRE encryption takes as input: a symmetric key K; a plaintext m; the probability
distribution PM of the plaintexts; and a deterministic encryption E that leaks nothing except
equality of the plaintexts.

Next the encryption algorithm calls the getSalts subroutine to pseudorandomly generate a
probability distribution PS over a set of salts S. The getSalts subroutine can use knowledge of
the plaintext distribution to choose a salt distribution that makes the ciphertexts close to uniform.
(We give a handful of candidate algorithms for getSalts below, and we evaluate their security in
the following section.) A salt s ∈ S is chosen at random according to PS and is pre-pended to the
message. Finally, the salt and plaintext are encrypted with the Deterministic encryption algorithm.

Decrypting simply uses the deterministic decryption D to recover the salt and plaintext, then
discards the salt, and returns the plaintext.

To search, the search term is encrypted with all the possible salts creating a query that searches
for all of these encrypted keywords separated by or clauses. WRE retains the sub-linear search
time of deterministic encryption, with a linear (in n where n is the number of salts) increase in
overhead. To retrieve all records equal to m, the client first computes all possible encryptions of
m and then requests all encrypted records equal to c1 or c2 ... or cn. Because the number of
unique ciphertexts for each plaintext is small, WRE allows the server to build useful indexes on the
encrypted data, just as with DET. To perform the search for each cn, the server simply consults
its index and returns the list of matching records.

An alternative construction uses a keyed PRF instead of a deterministic encryption algorithm.
Since the PRF is assumed to be one way, the output of the PRF is only used for creating search
tokens and the plaintext is also encrypted with a randomized encryption algorithm. Decrypting
ignores the search tokens and simply decrypts the ciphertext.

The WRE-2 encryption takes as input: a symmetric key K; a plaintext m; the probability
distribution PM of the plaintexts; a randomized encryption RE that leaks nothing; and a PRF
that leaks nothing except equality. The first steps in encryption are the same. The difference is a

6

Algorithm 1 WRE-1

1: function E(K,m,PM)
2: k1, k2 ← Expand(K)
3: S, PS ← getSalts(PM ,m, k1)

4: s
$← PS

5: c← E(k2, s||m) return c

6: function D(K, c)
7: k1, k2 ← Expand(K)
8: s||m← D(k2, c) return m

9: function Search(K,m,PM)
10: k1, k2 ← Expand(K)
11: S, PS ← getSalts(PM ,m, k1)
12: l← |S|
13: for i = 1, .., l do
14: ci = E(k2, Si || m)
15: return Query(c1 or c2.. or cl)

search tag is created using the PRF and salt, and the plaintext is encrypted with the randomized
encryption algorithm. The search algorithm uses the PRF to obtain all possible search tags instead
of the encryption algorithm.

The improvement in security, if any, of WRE over deterministic encryption is not immediately
clear. We show in the following section that the security of weakly randomized encryption against
inference attack is completely dependent on (i) the number of salts allocated to each plaintext and
(ii) the probability distribution from which the salts are sampled. Surprisingly, our analysis also
shows that, with a carefully chosen getSalts algorithm, we can construct a weakly randomized
encryption that leaks virtually no information about the plaintext when the distribution PM is
known. In Sections 4.1 and 4.2 below, we begin by introducing some simple “strawman” salt
algorithms. After that, we provide algorithms with increasing levels of provable security, Remainder
salts, Uniform Random Salts, and Poisson Random Salts.

4.1 Fixed Salts Method

We refer to the “folklore” version of weakly randomized encryption as the ”fixed salts” method,
because it always uses a constant number of salts for every plaintext, regardless of the frequency
of the plaintext. We label the security parameter of this scheme as N , the number of unique salts
per plaintext.

Security. If a plaintext m occurs in the unencrypted database with frequency p, then with fixed
salts, each of m’s N ciphertexts will occur in the EDB with frequency p

N . Intuitively, the fixed salt
method improves on the security of deterministic encryption because it reduces the differences in
the plaintext frequencies.

Using the analysis of from Baigneres, Junod, and Vaudenay (Thm. 6 in [5]), we could show
that the fixed salts method increases the number of records that can be safely stored in the EDB,
because it decreases the difference in frequency of the observed events (that is, the ciphertexts).
However, here we do not give a full analysis of the fixed salt method’s security, because we have

7

Algorithm 2 WRE-2

1: function E(K,m,PM , E, F)
2: k1, k2, k3 ← Expand(K)
3: S, PS ← getSalts(PM ,m, k1)

4: s
$← PS

5: t← F (k2, s||m)
6: c← E(k3,m) return c, t

7: function D(K, c,D)
8: k1, k2, k3 ← Expand(K)
9: m← D(k3, c) return m

10: function Search(K,m,PM , F)
11: k1, k2, k3 ← Expand(K)
12: S, PS ← getSalts(PM ,m, k1)
13: l← |S|
14: for i = 1, .., l do
15: ti = F (k2, Si || m)
16: return Query(t1 or t2.. or tl)

Algorithm 3 Fixed Salts Method

1: function GetSalts-Fixed(PM , m, k)
2: S ← [1, N]
3: PS ← DiscreteUniform(S)
4: return S, PS

limited space, and because it suffers from a few important limitations.

Limitations. First, the overall improvement to security is small. For large databases, the
adversary can still guess the plaintext with very high accuracy. Second, the fixed salt WRE is
not very efficient. In order to achieve any reasonable security for a database of moderate size,
it needs a large number of salts, making query processing unnecessarily intensive, especially for
low-frequency plaintexts. We could potentially improve both of these aspects if we used fewer salts
for low-frequency plaintexts. We formalize this idea in the next section.

4.2 Proportional Salts Method

The fixed salts method can be improved by taking into account the frequencies of the plaintexts in
the database. Intuitively, we would like each ciphertext to occur with roughly the same frequency,
regardless of the plaintext. In the proportional salts method, we allocate a different number of
salts to each plaintext, in proportion to its frequency in the plaintext data. Let the total number
of ciphertexts be NT . Then for a plaintext m with frequency PM (m), we use Nm ≈ PM (m) · NT

salts.

Unlike the fixed salts method, proportional salt allocation requires that the data owner must
know the plaintext distribution PM in order to encrypt a message. It also requires some extra
work to calculate the number of salts needed for each plaintext. These downsides are offset by the
increase in security.

8

Algorithm 4 Proportional Salt Allocation

1: function GetSalts-Proportional(PM , m, k)
2: Nm ← PM (m) ·NT

3: S ← [1, Nm]
4: PS ← DiscreteUniform(S)
5: return S, PS

Security. With proportional salt allocation, for any two plaintexts m0,m1 ∈ M, their cipher-
texts will appear in the EDB with approximately the same frequency:

PM (m0)

Nm0

≈ PM (m1)

Nm1

PM (m0)

NTPM (m0)
≈ PM (m1)

NTPM (m1)

∼ 1

NT
≈ ∼ 1

NT

Limitations. One limitation of proportional salts stems from the fact that we must allocate
an integer number of salts for each plaintext. This gives rise to an aliasing problem, where in
certain situations using more salts can actually reduce the security. For example, consider an
example database column with PM (m1) = 0.7 and PM (m2) = 0.3. If we encrypt this database with
NT = 10, we will end up with 7 salts for plaintext m1 and 3 salts for plaintext m2. This gives us
perfect security: every ciphertext has frequency 0.1, independent of the particular plaintext.

However, if we increase the total number of salts to 12, then we will have 8 ciphertexts for
plaintext m1, each with frequency 0.0875, and 4 ciphertexts for plaintext m2, each with frequency
0.075. Given sufficiently many encrypted records, the adversary will be able to distinguish the
plaintexts.

In general, it may not be possible to find a single value of NT that makes all plaintexts indis-
tinguishable without requiring an impractical number of ciphertexts. In an extreme case, we could
allocate more ciphertexts than we expect to have records in the database, ie set NT ≥ n, but this
is almost certainly not practical unless the database is very small.

In the following sections we address this problem in multiple ways. With Remainder Salts (§4.3),
we remove the leakage for most of the plaintexts in the EDB, at the cost of allowing the adversary to
recover some small fraction of plaintexts. With Random Salts (§4.4.1), rather than choose salts from
a uniform distribution, salts are chosen from a non-uniform distribution causing the frequencies
of all ciphertexts to appear within a random range. With the Poisson Salt technique (§4.4.2), we
create similar non-uniform salt distributions, but do so with Poisson processes to improve security.

4.3 Remainder Salts

With the Remainder Salts method, the idea is to encrypt as much of the database as possible with
ciphertexts that have statistically identical frequencies.

This extension biases our random number generator to choose a remainder salt less often than
other salts, allowing these other salts to be chosen with any weight, allowing their frequency to
be completely arbitrary values. This allows us to set the frequencies of all ciphertexts that are

9

not encrypted with a remainder salt to the exact uniform value, removing all frequency analysis.
Ciphertexts that are encrypted with a remainder salt are much easier to distinguish, but because
there’s only one remainder salt for each unique plaintext, we leak less information for the same
number of salts compared to proportional salts.

Because we can set the average frequency of non-remainder salt ciphertexts to any value, we
set them all to the same value. This shared frequency will be equal to 1/NT , where NT is the total
number of non-remainder salts.

Algorithm 5 Remainder Salt Method

1: function GetSalts-Remainder(PM , m, k)
2: I ← PM (m) ·NT

3: Nr ← bIc
4: Nm ← Nr + 1
5: S ← [1, Nm]
6: for each s in S do
7: if s < Nm then
8: PS(s) = 1/NT

9: else
10: PS(s) = (1/NT) ∗ (I −Nr)

11: return S, PS

Limitations. The remainder salts method leaks the last ciphertext (remainder salt), which later
methods will fix.

4.4 Random Salt Frequencies

In our final WRE technique, the distribution of the salts or each plaintext m is generated pseu-
dorandomly from a secret key and m. The number of salts allocated to each plaintext is also
randomized.

4.4.1 Uniform Random Frequencies

In the first version of this technique (Algorithm 6), we choose the frequency for each salt from a
random number, uniformly distributed on the range between zero and some maximum, pmax. For
a plaintext m with frequency PM (m) in the plaintext distribution, we allocate salts to m until the
sum of the ciphertext frequencies is within pmax of PM (m). At that point, we allocate one final
salt and assign it whatever remaining probability mass is left.

This ensures that all ciphertext frequencies fall within the same range, [0, pmax], regardless of
the plaintext. Moreover, except for the last ciphertext allocated to each plaintext, all ciphertext fre-
quencies, for all plaintexts, are drawn from the same Uniform distribution. Therefore the adversary
learns nothing about the plaintext by observing the ciphertext frequency.

However, because the frequencies for the final salt for each plaintext are not drawn from the same
distribution as the rest, it is possible that the adversary might be able to leverage this difference to
learn something about the plaintext. Next we show how we can remove this limitation by sampling
from a Poisson process to generate our salt frequencies.

10

Algorithm 6 Uniform Random Salt Frequencies

1: function GetSalts-Uniform(PM , m, k)
2: s = 1
3: total = 0
4: U = Uniform(0, pmax)
5: R = CSPRNG(k,m)
6: while total < PM (m)− pmax do
7: weight[s]← Sample(U,R)
8: total← total + weight[s]
9: s← s+ 1

10: weight[s]← PM (m)− total
11: Nm = s
12: S = [1, Nm]
13: for s ∈ S do
14: PS(s)← weight[s]

total

15: return S, PS

4.4.2 Poisson Random Frequencies

A Poisson process is a simple stochastic process often used to model the arrival of events in a system,
for example the occurrence of earthquakes in a geographical region, or the arrival of buses at a bus
stop. In a Poisson process with rate parameter λ, the times between arrival events, called the
“interarrival times,” are independent and identically distributed, and they follow an Exponential
distribution with parameter λ. The number of arrivals in an interval of length t is independent of
the events in all intervals before and after, and it is Poisson distributed with expected value λt.

In the Poisson version of WRE, we have one global parameter, the base rate λ. On expectation,
this method will generate about λ + |M| ciphertexts in total across all plaintexts. To allocate
salts for plaintext m ∈ M and to assign their relative weights, we sample arrivals in the interval
[0, PM (m)] from a Poisson process with rate λ. Let the number of arrival events in the interval be
N , and let their times be denoted a1, . . . , aN . Additionally, we define a0 = 0 and aN+1 = PM (m).
The interarrival times are xi = ai − ai−1 for i ∈ 1, . . . , N + 1.

Based on the outcome of this experiment, we allocate N + 1 salts to plaintext m, and when
we encrypt m, we choose salt i with probability xi

PM (m) . The resulting ciphertext will then have
frequency equal to xi in the encrypted database. Also note that N has a Poisson disribution, thus
on average we will allocate about λ · PM (m) + 1 salts to plaintext m.

In the end, the Poisson approach looks very similar to the Uniform random method, but instead
of sampling from a Uniform distribution to choose the weight of each salt, we sample instead from
an Exponential distribution. The pseudocode for our Poisson method’s algorithm is shown below
in Algorithm 7.

Security. Our analysis shows how the unique properties of the Poisson process make it ideally
suited for use in weakly randomized encryption. Most critically, the Poisson process guarantees
that, subject to one constraint on λ, all ciphertext frequencies for all plaintexts are pseudorandom
samples from indistinguishable Exponential distributions. Therefore a computationally bounded
adversary learns nothing about the plaintext from the frequencies of the ciphertexts.

11

Algorithm 7 Poisson Salt Distributions

1: function GetSalts-Poisson(PM , m, k)
2: s = 0
3: E = Exponential(λ)
4: R = CSPRNG(k,m)
5: lastArrival = 0
6: total = 0
7: prevTotal = 0
8: while total < PM (m) do
9: s = s+ 1

10: weight[s]← Sample(E,R)
11: prevTotal = total
12: total = total + weight[s]

13: total = PM (m)
14: weight[s]← total − prevTotal
15: Nm = s
16: S = [1, Nm]
17: for s ∈ S do
18: PS(s)← weight[s]

total

19: return S, PS

One technical limitation of the Poisson approach is that the frequency of the first salt for each
plaintext is not drawn from the same Exponential distribution as the others. To see why this is
so, notice that the Poisson process may generate zero arrival events in the interval [0, PM (m)].
This occurs whenever the first arrival time from the Poisson process occurs after the end of the
interval; in other words, when the first interarrival time is greater than PM (m). Then we have only
a single salt, and hence a single ciphertext that appears in the encrypted database with the same
probability as the plaintext, PM (m). Therefore the distribution of the first ciphertext frequency is
not in fact an Exponential; all the probability mass that the Exponential would assign to values
greater than PM (m) is instead lumped onto the point PM (m). We call this distribution a “capped
Exponential” with parameters λ and τ = PM (m). Figure 1 illustrates the difference between the
capped and regular Exponential distributions.

Recall from Theorem 3.1 that the adversary’s chance of success in the IND-LOA game is
bounded by the statistical distance between the distribution for his observed leakage given plain-
text m0 and the leakage distribution given m1. The statistical distance between the standard
Exponential(λ) and the capped Exponential with λ and τ is defined as the difference in their prob-
abilities. This is equal to the area under the Exponential curve at τ . From the definition of the
Exponential distribution, this quantity is

Pr(X > τ) = e−λτ

By increasing λ relative to PM (m), we can make this statistical distance arbitrarily small. We are
now ready to state our first result.

Theorem 4.1 (Single-Column Security for Poisson WRE). For a single database column with

12

Figure 1: Complementary cumulative distribution for capped versus standard Exponentials

distribution PM over the set of plaintextsM, the weakly randomized encryption scheme with Poisson
salt frequencies is IND-LOA secure.

Proof Sketch. The adversary can achieve success rate of 1/2 by random guessing. Analysis
of the ciphertext frequencies gives him an advantage bounded by the statistical distance between
the capped and standard Exponential distributions, which is negl(λ). By attempting to break the
CSPRNG, he gains an additional advantage at most negl(k). All together, his chance of success in
the game is

Pr[PrivKA,Π] =
1

2
+ negl(λ) + negl(k)

as desired.

5 Security for Multiple Columns

So far our solutions provide security against frequency analysis for single columns only. A harder
challenge arises from cross column attacks, or those attacks using co-occurrence frequencies. If
column 1 contains plaintexts m1i with i ∈ {1..n} and and column 2 contains plaintexts m2j with
j ∈ {1..q}, then a co-occurrence from column 1 and 2 is (m1i,m2j). The frequency of this co-
occurrence is how often they appear together.

This attack uses the relationships of data across columns. For example, a database column
containing income might have a uniform distribution of numbers. If the table had a second column
of education level, it is easy to see that there probably a high correlation between the data from
the income column eduction column. While the data in the income column is uniformly distributed
and by itself is difficult to attack, using the data in the Education column and the relationship
between data of the two columns might be enough for an attacker to learn the contents from the
uniformly distributed income column.

Thus preventing co-occurrence attacks requires that our ciphertexts not only achieve indistin-
guishablity in their column, but also across columns with their co-occurrence frequencies.

13

5.1 Encrypting Columns Independently

The simplest approach for handling multiple columns in a database table is to encrypt each column
independently. This hides all frequency information for each column in isolation, but leaves open
the possibility that the adversary could analyze ciphertext co-occurrence frequencies to learn about
the plaintext.

Theorem 5.1. Suppose a Poisson weakly randomized encryption scheme Π with parameter λ is used
to encrypt a database of d columns and n rows with plaintext distribution PM . Let f(ma0,mb0, . . . ,mk0)
be the smallest non-zero frequency of a plaintext tuple for k plaintexts (ma0,mb0, . . . ,mk0) and let
f(ma1,mb1, . . . ,mk1) be the largest frequency for some k-tuple of plaintexts (ma1,mb1, . . . ,mk1)
over the same subset of columns. Let 0 < τ < 1, let

p0 = f(ma0,mb0, . . . ,mk0) · τk

and let

p1 = f(ma1,mb1, . . . ,mk1) · τk.

If Π is IND-LOA secure for each column, then it is also ε-IND-LOA secure against attacks that
leverage any subset of the d columns, with

ε = ∆(Binom(n, p0), Binom(n, p1))

with probability 1− e−λτ .

The security bound from Theorem 5.1 depends strongly on the distribution PM of the plaintexts.
In the worst case scenario for an arbitrary dataset, the statistical distance could be very large (ie,
close to 1), so the scheme would provide essentially no real security unless λ is very large and τ is
very small.

However with many real world datasets, the epsilon may be reasonable. For example, we
computed the bound from Theorem 5.1 for the Texas Health Care Data set [2] used in the NKW
attacks [29]. Table 1 shows the statistical distance that we get for the data distributions from the
Texas data for databases from 10,000 up to 10 million records, with τ from 0.01 to 0.00001.

τ
Size of Database

10,000 100,000 1,000,000 10,000,000

0.001 0.010501 0.095620 0.500062 0.500062

0.0001 0.000383 0.003814 0.036854 0.267487

0.00001 0.000024 0.000236 0.002358 0.023080

Table 1: Statistical Distance Examples from Texas Health Care Data

While these values are not negligible, some of them allow the adversary an advantage of less
than 0.001. Although this is a much weaker guarantee than is typically used for cryptographic
security, e.g. for a block cipher, it is many times stronger than the security that DET or ORE can
achieve for even a single column.

14

5.2 Multicolumn Poisson Salt Allocation

Since multicolumn security is case by case, depending on the actual dataset, the database size and
τ parameter, we looked for a stronger algorithm that achieves multicolumn security for any dataset.
We achieved this by treating the co-occurrence of plaintexts as one plaintext and by requiring that
each co-occurrence plaintext use a unique set of salts. That is, if a salt occurs in seti, it does not
occur in any other salt set.

Our method to accomplish the uniqueness of each set of salts is to take the value of the PRF
for the plaintext row and prepend it to the chosen salt. This prevents us from having to either
store or calculate the appropriate salts to eliminate duplicate use.

Algorithm 8 Poisson Multicolumn Encryption

1: function E(PM , (m1,m2, ...mi), F ,E,K)
2: k1, k2, k3 ← Expand(K)
3: S, PS ← getSalts(PM ,m(m1,m2, ...mi), k1)

4: s
$← PS

5: h← F (k1, (m1,m2, ...mi))
6: t← F (k2, h||s||m1), F (k2, h||s||m2),
7: ..., F (k2, h||s||mi)
8: c← E(k3,m1), E(k3,m2), ..., E(k3,mi)
9: return c, t

Theorem 5.2. Let (ma,mb, ...,mz) be a plaintext tuple representing one record with z columns. If
each plaintext tuple is assigned a Poisson Salt Distribution with λ parameter that achieves IND-
LOA, and each set of salts for each plaintext tuple is unique, then each ciphertext tuple (ca, cb, ..., cz)
and every sub co-occurrence of (ca, cb, ..., cz) , is IND-LOA.

Proof. We already know that the ciphertext tuple (ca, cb, ..., cz) has perfect secrecy by construction
from our single column Theorem 4.1.

Since each ciphertext tuple gets a unique set of salts, then (ca, cb, ..., cz) will have the same
frequency as any sub co-occurrence of (ca, cb, ..., cz). Since the frequencies of (ca, cb, ..., cz) are
indistinguishable and are the same as the frequencies of its sub co-occurrences, the frequencies of
all its sub co-occurrences are indistinguishable.

The downside to using this technique is in order to achieve IND − LOA security for multiple
columns, we must set the security parameter λ large enough such that 1

λ is smaller than the
frequency of the least frequent plaintext record. This means we will require more salts overall;
therefore our queries must be more complex, and the database must do more work to process them.
Also, when the number of columns is large and the set of possible plaintexts in each column is not
small, even just computing the total number of salts for a given plaintext in a given column may
be computationally intensive.

However for many datasets, this technique is still viable in practice. For example, looking
at the Texas Health care database, there are several columns that contain only a small set of
plaintexts; Table 2 gives some examples. Many of these are highly correlated with other columns.
For such low-entropy datasets, this approach gives a large increase in security versus encrypting

15

each column independntly, and we can calculate the entire set of salts with a relatively small amount
of computation.

Column Unique Plaintexts

Sex Code 4

Race 6

Ethnicity 3

Spec Unit 13

Pat State 8

Table 2: Texas Health Care Columns

6 Efficient Range Queries with WRE

In this section we propose a scheme for range queries using our multi-column secure WRE from
Section 5. The construction is practical, and it is easily deployed with existing databases with
practical space requirements and reasonable performance. Unlike ORE, our scheme does not leak
the order of the plaintexts.

The primary concept for this scheme involves breaking apart, or partitioning, each plaintext
number into multiple units, and then encrypting each unit with WRE. Comparisons on the en-
crypted ciphertext units then enable range queries and similar queries provided by order revealing
encryption.

For example, partitioning the number 64 into two base-10 units U1 and U2 results in the pair
(U1 = 6, U2 = 4). Partitioning 64 into two base-10 units gives (U1 = 4, U2 = 0). Table 3 shows how
we can construct a plaintext range query over the original space of two-digit numbers by combining
equality queries over the two new units U1 and U2.

((U1 = 1) AND (U2 = 8))
OR

((U1 = 1) AND (U2 = 9))
OR

(U1 = 2)
OR

((U1 = 3) AND (U2 = 0))
OR

((U1 = 3) AND (U2 = 1))

Table 3: Plaintext Range Query: 18 to 31
2 Units, Base 10, no Salts

To perform the same range query over the encrypted database, we simply replace the equality
clause for each plaintext value with a clause that represents all the possible ciphertexts for the given
plaintext. Table 4 shows the structure of the encrypted version of the range query from Table 3,
where each plaintext gets two salts, s1 and s2.

16

(((U1 = E(s1||1)) or (U1 = E(s2||1))) AND

((U2 = E(s1||8)) or (U2 = E(s2||8))))
OR

(((U1 = E(s1||1)) or (U1 = E(s2||1))) AND

((U2 = E(s1||9)) or (U2 = E(s2||9))))
OR

(((U1 = E(s1||2)) or (U1 = E(s2||2)))
OR

(((U1 = E(s1||3)) or (U1 = E(s2||3))) AND

((U2 = E(s1||0)) or (U2 = E(s2||0))))
OR

(((U1 = E(s1||3)) or (U1 = E(s2||3))) AND

((U2 = E(s1||1)) or (U2 = E(s2||1))))

Table 4: Encrypted Range Query: 18 to 31
2 Units, Base 10, 2 Salts

The encryption function, shown in Algorithm 9 takes as input the messagem, a WRE encryption
function E, and the base b for partitioning. To encrypt, the message m is split into a list of n base-b
units. Each unit is stored as a column in the encrypted database, so the DBMS can create indexes
to enable fast search on each of the units. Each unit is encrypted with the WRE scheme and
inserted into the database.

Decrypting reverses the process. First we collect the columns that comprise the units of the
original plaintext column, then we decrypt each unit, and finally we append the decrypted plaintexts
together.

Algorithm 9 Range-Query-WRE

1: function EK(m,E, b)
2: u1, . . . , un ← divide(m, b)
3: for i = 1, . . . , n do
4: S, PS ← getSalts(PUi , ui, k)

5: si
$← PS

6: ci ← E(si||ui)
7: pad(c)
8: return c
9: function DK((c1, . . . , cn), D, b)

10: unpad(c)
11: m← ∅
12: for i = 1, . . . , n do
13: si||mi ← D(ci)
14: m← m||mi

return m

17

The process for transforming a range query over the single plaintext column into a query over
the new “unit” ciphertext columns is described more formally in Algorithm 10 in Appendix B.
The WRE range query is comprised of a set of equality queries separated by conjunctions and
disjunctions. If our logarithmic base for the partitioning is b and we have n units per plaintext,
then a naive implementation of the query algorithm would in a worst case scenario perform bn

equality queries. However searching on all units is not necessary. Our algorithm has a worst case
complexity of 2bn + b. The key insight is that we only need to get all possible unit combinations
on the highest and lowest unit values for each column. For example, Table 3 and Table 4 illustrate
a query for the range [18, 31] using base b = 10 and n = 2 units.

Security. The WRE range query scheme encrypts the database column for each “unit” indepen-
dently. Therefore its security is exactly the same as the approach for encrypting multiple columns
discussed in Section 5.1. As our data analysis in that section showed, the adversary’s ability to dis-
tinguish plaintexts depends heavily on the distribution of the data. In the real world, relationships
between the columns are often weak enough that the adversary’s advantage can be kept below an
acceptable threshold by increasing the security parameter of the WRE for each column.

For an example specific to range queries, we encrypted the SPARTA [35] datasets (see §7),
and we computed the statistical distance for all of the range query columns. Figure 5 shows the
worst-case statistical distance for SPARTA databases from 10,000 up to 10 million records, with
the partition base b = 16 and τ parameters from 0.01 to 0.00001.

τ
Size of Database

10,000 100,000 1,000,000 10,000,000

0.001 0.003329 0.032200 0.234379 0.626847

0.0001 0.000033 0.000334 0.003329 0.032200

0.00001 3.341e-07 0.000003 0.000033 0.000334

Table 5: Statistical distance for range query columns in SPARTA data.

Clearly, if a data owner uses too small of a λ to encrypt too large of a database, then the
adversary can use the relationships between the unit columns to guess many of the plaintexts. For
example, with λ = 1000 and n = 10 million, by Theorem 3.1 we allow the adversary to achieve
a success rate of 1

2 + 1
2 · 0.63, or about 81%. On the other hand, for a database of 100 thousand

records, the same security parameter limits the adversary to less than 52%.
We do not mean to claim that any of the statistical distances in Table 5 are “secure.” What

constitutes an acceptable level of security can vary greatly from application to application. In
some cases, limiting the adversary to 52% is sufficient, while in others, allowing 50.001% could
have serious negative consequences.

Unlike earlier schemes, we give the data owner the ability to predict the adversary’s success
rate and make an informed decision. Before encrypting a given database, the data owner can also
run this analysis for several possible candidate bases, e.g. base-8, base-10, base-16. Then they can
pick the base that yields a set of unit columns whose frequencies leak the least.

7 Performance Evaluation

We implemented several flavors of weakly randomized encryption, including the fixed salts method,
uniform random frequencies, and Poisson salt allocation in the Haskell programming language.

18

We also implemented our WRE-based approach for range queries, using Poisson salt allocation to
encrypt each column. To evaluate the performance of our prototype on realistic data and queries
at a variety of scales, we used the SPARTA [35] framework from MIT-LL.

The SPARTA test framework includes a data generator and a query generator. The data
generator builds artificial data sets with realistic statistics based on the US Census and Project
Gutenberg. The query generator creates queries for this test database based on the desired query
types and number of return results.

7.1 Experimental Setup

We used the database generator to generate databases with 100,000 records, 1 million records and
10 million records. We generated over 1,000 queries for each database consisting of a mix of equality
and range queries that returned results sizes between 1 and 10,000 records.

We tested the performance of the fixed salt method with 100 and 1,000 salts, and we tested
Poisson salt allocation using λ of 100, and 1,000.

The partitioning base for the WRE-ORE setup was b = 16 bits for integer types . Even
though the fixed salts method does not provide adequate security, it provides a nice comparison for
benchmarking versus the Poisson approach, which uses varying numbers of salts for each plaintext.

We performed the tests with two different network scenarios. In the first scenario, the client
and the database server are located on the same local network via a 1 Gbps Ethernet switch. In the
second scenario, we use Google Cloud Platform to host the database server, and the client connects
to the server over the Internet via a 30 Mbps residential connection.

The LAN test utilized an older 12 core (dual Xeon E5645 CPU) server with 64GB of RAM, an
array of 10k RPM hard drives, and Postgres 9.6 as the DMBS. The cloud test utilized a Postgres 9.6
SAAS instance with 8 cores, 16GB of RAM, and solid-state disk storage. While the cloud specs are
lower than our LAN test, the higher cores and more ram only helped the performance on parallel
query tests.

7.2 Experimental Results

The following table shows the total ciphertext expansion from encrypting the SPARTA-generated
databases. We encrypted the columns fname, lname, ssn, city, and zip with WRE, and we
encrypted the columns income, last updated, and foo for range queries.3

Encryption Type DB Size DB + Indexes Size

100k Plaintext 112 MB 136 MB

100k Encrypted 156 MB 244 MB

1M Plaintext 1116 MB 1365 MB

1M Encrypted 1558 MB 2447 MB

10M Plaintext 11 GB 13 GB

10M Encrypted 15 GB 24 GB

Table 6: Ciphertext Expansion

3The SPARTA column foo is simply a random 64 bit integer.

19

We performed two variations of each SPARTA-generated query. The first variation takes the
form SELECT ID from main where Since column ID is the primary key, these queries only
require that the DMBS must scan the indexes. The second variation takes the form SELECT *
from main where This selects the entire record, and thus requires retrieving the records from
storage.

Since all the test variations showed very similar performance trends compared to the plaintext
queries, and due to space constraints, we only show tests results for the 10 million record database
on the LAN. Interestingly, the experiments on Google Cloud Platform showed slightly better per-
formance than the experiments over the LAN. We believe this was due to hardware differences, as
the Google Cloud platform provided SSD drives and our LAN test used a server with conventional
magnetic hard drives.

As expected, as the number of salts increases, the performance decreases. The Fixed Salt 1000
performs worse than the Poisson λ = 1000 tests and Poisson λ = 1000 performs slightly worse than
Poisson λ = 100. This isn’t a surprise, since the Fixed Salt technique applies 1000 salts to each
plaintext while the λ = 1000 results in λ+ |M | salts.

Figures 6 and 7 show that WRE equality query tests perform very close and in some cases
perform better than plaintext. The range queries do sometimes show a significant performance
penalty as figures 2 and 4 show. This is due to the query structure and complexity. The equality
queries are very simple and much shorter compared to the range queries.

Parallel Query Processing. A unique aspect of our range queries comes from their structure
which is “embarrassingly parallel.” We conducted range query tests separating each of the outer
”or” clauses into separate queries, running them in parallel. The plaintext query in this test is
run sequentially. Figures 3 and 5 show the results from range queries using the parallel technique.
We do not show any graphs for parallel equality queries since those queries do not contain the
same structure to use in parallel. Range queries receive a substantial benefit from utilizing parallel
queries.

Query Complexity. While the equality performance results showed near linear trends in the
size of the return results, the range queries do not. This is due to another dimension affecting
the performance, the complexity of the query. Figure 8 shows the query performance time against
the count of outer ”or” clauses in each query. These results indicate that the query complexity
contributes more to performance than the size of return results.

Figure 6: SELECT ID Equality Queries - 10 Million Record Record LAN Test

20

Figure 2: SELECT ID Range Queries - 10
Million Record LAN Test

Figure 3: SELECT * Range Queries - 10 Mil-
lion Record LAN Test

Figure 4: PARALLEL: SELECT ID Range
Queries - 10 Million Record LAN Test

Figure 5: PARALLEL: SELECT * Range
Queries - 10 Million Record LAN Test

Figure 7: SELECT * Equality Queries - 10 Million Record Record LAN Test

21

Figure 8: SELECT * Range Queries - Time vs Query Complexity - 10 Million Record LAN Test

References

[1] Always encrypted (database engine). https://docs.microsoft.com/en-us/sql/

relational-databases/security/encryption/always-encrypted-database-engine.
Accessed: 2017-10-31.

[2] Hospital Discharge Data Public Use Data File. http://www.dshs.state.tx.us/THCIC/

Hospitals/Download.shtm.

[3] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order preserving encryption for numeric data.
In SIGMOD, pages 563–574, 2004.

[4] Georgios Amanatidis, Alexandra Boldyreva, and Adam O’Neill. Provably-Secure Schemes for
Basic Query Support in Outsourced Databases. In Steve Barker and Gail-Joon Ahn, editors,
DBSec, volume 4602 of Lecture Notes in Computer Science, pages 14–30. Springer, 2007.

[5] Thomas Baignères, Pascal Junod, and Serge Vaudenay. How far can we go beyond linear
cryptanalysis? pages 432–450, 2004.

[6] M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and Efficiently Searchable Encryption.
In CRYPTO, pages 535–552, 2007.

[7] A. Boldyreva, N. Chenette, Y. Lee, and A. O’neill. Order-preserving symmetric encryption.
In EUROCRYPT, pages 224–241, 2009.

[8] A. Boldyreva, N. Chenette, and A. O’Neill. Order-preserving encryption revisited: improved
security analysis and alternative solutions. In CRYPTO, pages 578–595, 2011.

[9] Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry, and Joe Zimmerman.
Semantically secure order-revealing encryption: Multi-input functional encryption without
obfuscation. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT (2), volume 9057
of Lecture Notes in Computer Science, pages 563–594. Springer, 2015.

22

[10] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. Leakage-Abuse Attacks
Against Searchable Encryption. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors,
ACM Conference on Computer and Communications Security, pages 668–679. ACM, 2015.

[11] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-
Catalin Rosu, and Michael Steiner. Dynamic Searchable Encryption in Very-Large Databases:
Data Structures and Implementation. In NDSS. The Internet Society, 2014.

[12] Nathan Chenette, Kevin Lewi, Stephen A Weis, and David J Wu. Practical order-revealing
encryption with limited leakage. In International Conference on Fast Software Encryption,
pages 474–493. Springer, 2016.

[13] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable Symmetric Encryption:
Improved Definitions and Efficient Constructions. In CCS, pages 79–88, 2006.

[14] F. Betül Durak, Thomas M. DuBuisson, and David Cash. What else is revealed by order-
revealing encryption? In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’16, pages 1155–1166, New York, NY, USA, 2016. ACM.

[15] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–169,
2009.

[16] Eu-Jin Goh. Secure Indexes. IACR Cryptology ePrint Archive, 2003:216, 2003.

[17] Oded Goldreich. Towards a theory of software protection and simulation by oblivious rams.
In Alfred V. Aho, editor, STOC, pages 182–194. ACM, 1987.

[18] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of computer and system
sciences, 28(2):270–299, 1984.

[19] Patrick Grofig, Martin Hrterich, Isabelle Hang, Florian Kerschbaum, Mathias Kohler, Andreas
Schaad, Axel Schrpfer, and Walter Tighzert. Experiences and observations on the industrial
implementation of a system to search over outsourced encrypted data. In Stefan Katzenbeisser,
Volkmar Lotz, and Edgar R. Weippl, editors, Sicherheit, volume 228 of LNI, pages 115–125.
GI, 2014.

[20] Paul Grubbs. On deploying property-preserving encryption. Real World Cryptography, 2016.

[21] Paul Grubbs, Richard McPherson, Muhammad Naveed, Thomas Ristenpart, and Vitaly
Shmatikov. Breaking web applications built on top of encrypted data. IACR Cryptology
ePrint Archive, 2016:920, 2016.

[22] Paul Grubbs, Kevin Sekniqi, Vincent Bindschaedler, Muhammad Naveed, and Thomas Ris-
tenpart. Leakage-abuse attacks against order-revealing encryption. In 2017 IEEE Symposium
on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017, pages 655–672,
2017.

[23] Warren He, Devdatta Akhawe, Sumeet Jain, Elaine Shi, and Dawn Xiaodong Song. Shad-
owCrypt: Encrypted Web Applications for Everyone. In Gail-Joon Ahn, Moti Yung, and
Ninghui Li, editors, ACM Conference on Computer and Communications Security, pages 1028–
1039. ACM, 2014.

23

[24] Bijit Hore, Sharad Mehrotra, Mustafa Canim, and Murat Kantarcioglu. Secure multidimen-
sional range queries over outsourced data. The VLDB JournalThe International Journal on
Very Large Data Bases, 21(3):333–358, 2012.

[25] Bijit Hore, Sharad Mehrotra, and Gene Tsudik. A privacy-preserving index for range queries.
In Proceedings of the Thirtieth international conference on Very large data bases-Volume 30,
pages 720–731. VLDB Endowment, 2004.

[26] Seny Kamara. Encrypted search. ACM Crossroads, 21(3):30–34, 2015.

[27] Billy Lau, Simon P. Chung, Chengyu Song, Yeongjin Jang, Wenke Lee, and Alexandra
Boldyreva. Mimesis Aegis: A Mimicry Privacy Shield-A System’s Approach to Data Pri-
vacy on Public Cloud. In Kevin Fu and Jaeyeon Jung, editors, USENIX Security Symposium,
pages 33–48. USENIX Association, 2014.

[28] Kevin Lewi and David J. Wu. Order-Revealing Encryption: New Constructions, Applications,
and Lower Bounds. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors, ACM Conference on Computer and Communications Security,
pages 1167–1178. ACM, 2016.

[29] Muhammad Naveed, Seny Kamara, and Charles V. Wright. Inference Attacks on Property-
Preserving Encrypted Databases. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, ed-
itors, ACM Conference on Computer and Communications Security, pages 644–655. ACM,
2015.

[30] Omkant Pandey and Yannis Rouselakis. Property preserving symmetric encryption. In David
Pointcheval and Thomas Johansson, editors, EUROCRYPT, volume 7237 of Lecture Notes in
Computer Science, pages 375–391. Springer, 2012.

[31] Raluca A. Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakrishnan.
CryptDB: protecting confidentiality with encrypted query processing. In Ted Wobber and
Peter Druschel, editors, SOSP, pages 85–100. ACM, 2011.

[32] David Pouliot and Charles V. Wright. The Shadow Nemesis: Inference Attacks on Efficiently
Deployable, Efficiently Searchable Encryption. In Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM Conference on Com-
puter and Communications Security, pages 1341–1352. ACM, 2016.

[33] D. Song, D. Wagner, and A. Perrig. Practical Techniques for Searching on Encrypted Data.
In S&P, pages 44–55, 2000.

[34] Emil Stefanov and Elaine Shi. Oblivistore: High performance oblivious cloud storage. In IEEE
Symposium on Security and Privacy, pages 253–267. IEEE Computer Society, 2013.

[35] Mayank Varia, Benjamin Price, Nicholas Hwang, Ariel Hamlin, Jonathan Herzog, Jill Poland,
Michael Reschly, Sophia Yakoubov, and Robert K. Cunningham. Automated Assessment of
Secure Search Systems. SIGOPS Oper. Syst. Rev., 49(1):22–30, January 2015.

[36] Jieping Wang and Xiaoyong Du. A secure multi-dimensional partition based index in das. In
Yanchun Zhang, Ge Yu, Elisa Bertino, and Guandong Xu, editors, APWeb, volume 4976 of
Lecture Notes in Computer Science, pages 319–330. Springer, 2008.

24

[37] Liang Wang, Paul Grubbs, Jiahui Lu, Vincent Bindschaedler, David Cash, and Thomas Ris-
tenpart. Side-channel attacks on shared search indexes. In IEEE Symposium on Security and
Privacy, pages 673–692. IEEE Computer Society, 2017.

[38] Charles V. Wright and David Pouliot. Early detection and analysis of leakage abuse vulner-
abilities. Cryptology ePrint Archive, Report 2017/1052, 2017. http://eprint.iacr.org/

2017/1052.

A Proof of Theorem 5.1

Proof. Let f(xa, xb, ..., xz) be a co-occurrence from a row in a database table containing each column
from the row. If there are k columns in the table, We can can choose any i ∈ {2..(k − 1)} columns
from the row creating a different co-occurrence. All of the {2..(k − 1)} column co-occurrences we
call sub co-occurences of (xa, xb, ..., xz). We can also substitute c or m for x representing ciphertext
or plaintexts.

Since ciphertext frequencies take on random frequencies from the Poisson process, the leakage
with ciphertext co-occurrence frequencies does not come from the co-occurrence frequency of the
ciphertext. The leakage instead is a result of the ratio of the ciphertext co-occurrence frequency
and the single column co-occurrence frequencies.

f(ca, cb, .., cz)

f(ca) · f(cb), ..., ·f(cz)

If enc(ma,mb, ...,mz) = (ca, cb, ..., cz) then we expect that as the database gets large:

f(ma,mb, ...,mz)

f(ma) · f(mb)·, ..., ·f(mz)
=

f(ca, cb, ..., cz)

f(ca) · f(cb)·, ..., ·f(cz)

Thus:

f(ca, cb, .., cz)

=
f(ma,mb, ...,mz)

f(ma) · f(mb)·, ..., ·f(mz)
· f(ca) · f(cb)·, ..., ·f(cz)

= f(ma,mb, ...,mz) ·
f(ca)

f(ma)
· f(cb)

f(mb)
· ... · f(cz)

f(mz)

The value f(ci)
f(mi)

is equal to the salt frequency i. The salt frequencies are chosen from the
exponential distribution with parameter λ. Section 4.4.2, Poisson Random Frequencies shows us
that Pr(X > τ) = e−λτ . Since we are single column IND-LOA secure across all columns, we know
that this probability is negligible. Thus we can use τ as the highest probable salt frequency.

Knowing the highest probable salt frequency is important, because as τ gets smaller, the distance
between f(ma,mb, ...,mz) · τk and f(ma2,mb2, ...,mz2) · τk gets smaller. Thus using the highest
probable salt frequency of τ will give us the worst case distance between f(ma,mb, ...,mz) · τk and
f(ma2,mb2, ...,mz2) · τk.

Thus distinguishing between (
E(ma), E(mb), ..., E(mz)

)
and

25

(
E(ma2), E(mb2), ..., E(mz2)

)
is bounded by the statistical distance (from Definition 3):

∆
(
f(ma,mb, ...,mz) · τk,
f(ma2,mb2, ...,mz2) · τk

)
If we let p1 = f(ma,mb, ...,mz) · τk and p2 = f(ma2,mb2, ...,mz2) · τk then ∆(p1, p2) is:

∆ =
1

2

n∑
k=1

∣∣∣∣(nk
)
pk1 · (1− p1)n−k −

(
n

k

)
pk2 · (1− p2)n−k

∣∣∣∣

B ORE-WRE Search Algorithm

Algorithm 10 ORE-WRE Query Expansion

1: Let L be the smaller term in the range query
2: Let R be the larger term in the range query
3: Let d be the unit base (ex 10, 16, 2)
4: Let U be a function that divides search terms into lists of tuples of (unitID, unit)
5: Let S be the salt generation algorithm, its input is a tuple of (unitID, unit), and its output is

a conjunction of tuples of (salt, unitID, unit) for all possible salts for the (unitID, unit) tuple.
6: Let And be a function whose input is a list and outputs a Disjunction of all elements in the

list.
7: Let Or be a function whose input is a list and outputs a Conjunction of all elements in the list.
8: Replicate :: Int → a→ [a]. Let (Replicate d x) be a function that creates a list of length d of

duplicate x items.
9: zip :: [a] → [b] → [(a, b)]. zip takes two lists and returns a list of correspending pairs. If one

input list is short, excess elements of the longer list are discarded.
10: let ++ be list concatenation
11: snoc :: [a]→ a→ [a]. snoc appends an element to the end of a list
12: map :: (a → b) → [a] → [b]. Map applies a function to each value in a list and returns a new

list.
13: Query find all x such that L ≤ x ≤ R
14: function Query(L, R, U , S)
15: Let [(ul1, l1)..(uli, li)]← U(L)
16: Let [(ur1, r1)..(uri, ri)]← U(R)
17: Let x = first unit position where li 6= ri
18: Let same = [(ul1, l1)..(ul(x−1), l(x−1))]
19: Let q1 = QBuild(HI, [rx+1..ri], same)
20: Let q2 = QBuildMid(ulx, lx, rx, same)
21: Let q3 = QBuild(LO, [lx+1..li], same)

return Or (q1 ++ q2 ++ q3)

22: function QBuild(id, [(ux, px)..(ui, pi)], same)

26

23: if length [(ux, px)..(ui, pi)] == 0 then
24: return And (S (same))

25: if id == HI then
26: Let range = [0..(px − 1)]
27: else
28: Let range = [(px + 1)..(d− 1)]

29: Let temp1 = (zip (replicate d ux) range)
30: Let temp2 = map (snoc same) temp1
31: Let query = map And (map (map S) t2)
32: Let r =
33: (QBuild [(ux+1, px+1)..(ui, pi)], same)
34: return query ++ r

35: function QBuildMid(ulx, lx, rx, same)
36: Let Z = zip (replicate d ulx) [(lx + 1)..(rx − 1)]
37: Let X = map (snoc same) Z
38: return map Or X

27

