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B-1050, Bruxelles, Belgium

2 Department of Physics and Astronomy

CB# 3255 Phillips Hall

University of North Carolina

Chapel Hill, NC 27599-3255, USA

Abstract

If one tries to view de Sitter as a true (as opposed to a meta-stable) vacuum, there

is a tension between the finiteness of its entropy and the infinite-dimensionality of its

Hilbert space. We invetsigate the viability of one proposal to reconcile this tension

using q-deformation. After defining a differential geometry on the quantum de Sitter

space, we try to constrain the value of the deformation parameter by imposing the

condition that in the undeformed limit, we want the real form of the (inherently

complex) quantum group to reduce to the usual SO(4,1) of de Sitter. We find that

this forces q to be a real number. Since it is known that quantum groups have finite-

dimensional representations only for q = root of unity, this suggests that standard

q-deformations cannot give rise to finite dimensional Hilbert spaces, ruling out finite

entropy for q-deformed de Sitter.
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1 Introduction

Observations indicate that our Universe is currently in a regime of accelerated

expansion, and that we might be living in an asymptotically de Sitter spacetime

[1, 2]. From the perspective of a co-moving observer, de Sitter spacetime has a

cosmological horizon and an associated finite entropy [1, 5]. Finiteness of entropy

suggests finite dimensionality of the Hilbert space, but since the isometry group of de

Sitter is non-compact and therefore has no finite dimensional unitary representations,

we immediately have a problem in our hands [4, 3].

One idea that has been proposed as a way out of this quandary is to look for q-

deformations [6, 7, 8, 9] of the isometry group which might admit finite dimensional

unitary representations. When the deformation parameter(s) are taken to → 1, we

recover the classical group. It is known that the standard q-deformations of (com-

plexified and therefore non-compact) classical groups have finite dimensional unitary

representations when q is a root of unity [10, 11, 12, 13, 14, 15, 17].

In this paper, we first look at how the geometric structure of the underlying de

Sitter space is modified when its symmetry group is deformed. It turns out that a

deformed symmetry group necessitates a deformed differential calculus on the under-

lying space in order for the differential structure to be covariant with respect to the
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new q-symmetry. In section 2, we will make use of the work by Zumino et al. [18, 19]

to explicitly write down the differential calculus on the quantum Euclidean space un-

derlying the deformed SO(5;C). Quantum groups are defined through their actions1

on complex vector spaces, and so we need to start with SO(5;C) before restricting

to an appropriate real form to obtain SO(4, 1).

To obtain this real form, we need to choose a “∗-structure” (conjugation) on

the algebra [20, 22]. We do this in section 3 and get SO(4, 1)q. The definition of

conjugation that is necessary for imposing the reality condition on the group elements,

induces a conjugation on the underlying quantum space as well. Using this we can

choose our co-ordinates to be real, and by imposing an SO(4, 1)q-covariant constraint

on the quantum space we get a definition of quantum deSitter space. This is analogous

to the imposition of −(X0)2 + (X i)2 = 1 on a five-dimensional Minkowski space

(thought of as a normed real vector space) to get the classical de Sitter space.

The interesting thing is that the allowed real form of SO(5;C)q which gives rise

to SO(4, 1) in the q → 1 limit is constrained by the condition that q be real. But

the representation theory of standard quantum groups allows finite-dimensional rep-

resentations only when the deformation parameter is a root of unity [17, 16]. This

suggests that to get finite dimensional Hilbert spaces that could possibly be useful

for de Sitter physics, we might need to look for non-standard deformations. Or it

might be an indication that quantum mechanics in de Sitter space is too pathological

to make sense even after q-deformation.

Finiteness of de Sitter Hilbert space has also been discussed in [27, 28], and q-

deformation in the context of AdS/CFT has been considered in [29, 30].

2 Differential Calculus on the Quantum Euclidean Space

Following [18], we will consider deformations of the differential structure of the

underlying space (with co-ordinates xk, k = 1, 2, ...N) by introducing matrices B, C

and F (built of numerical coefficients) such that

Bkl
mnx

mxn = 0, (2.1)

∂lx
k = δkl + Ckm

ln xn∂m, (2.2)

1To be precise we should say co-actions, but we are using the word loosely.
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∂n∂mF
mn
kl = 0. (2.3)

In the limit when there is no deformation, these matrices should tend to the limits

Bkl
mn → (δkmδ

l
n − δlmδ

k
n), (2.4)

C lk
nm → δknδ

m
l , (2.5)

Fmn
kl → (δnk δ

m
l − δnl δ

m
k ), (2.6)

so that we have the usual algebra of coordinates and their derivatives. We could also

deform the commutation relations for 1-forms and exterior differentials, but these fol-

low straightforwardly from the matrices B, C and F upon imposing natural properties

like Leibniz rule etc. So we will not concern ourselves with them here.

To construct a calculus on the space that is covariant under the co-action of a

quantum group, we will use the R-matrix of the appropriate quantum group to define

our matrices B, C and F . To do this, we first look at the matrix2 R̂, which is related to

the R-matrix through R̂ij
kl ≡ Rji

kl. This R̂ satisfies the quantum Yang-Baxter equation

by virtue of the fact that R does:

R̂12R̂23R̂12 = R̂23R̂12R̂23. (2.7)

It has a characteristic equation of the form:

(R̂− µ1I)(R̂− µ2I)...(R̂− µmI) = 0. (2.8)

It turns out that we can meet all the consistency requirements that B, C and F

should satisfy in order for them to define a consistent deformation, if we set

C = −R̂/µα, (2.9)

B = F =
∏

β(6=α)

(R̂− µβI), (2.10)

with some choice of the eigenvalue µα. With these definitions, the consistency condi-

tions become automatic because R̂ satisfies the Yang-Baxter equation.

The R-matrix for SO(2n+ 1) [20] looks like

R = q

2n
∑

i 6=i′

Eii ⊗ Eii + q−1

2n
∑

i 6=i′

Eii ⊗ Ei′i′ + En+1,n+1 ⊗ En+1,n+1 +

+

2n
∑

i 6=j,j′

Eii ⊗Ejj + (q − q−1)
[

2n
∑

i>j

Eij ⊗ Eji −
2n
∑

i>j

qρi−ρjEij ⊗Ei′j′

]

. (2.11)

2R̂ is also often called the R-matrix, but we will not do so to avoid confusion.
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For SO(5), n = 2, i and j run from 1 to 5, and Eij is the 5 × 5 matrix with 1 in

the (i, j)-position and 0 everywhere else. The symbol ⊗ stands for tensoring of two

matrices. We define i′ = 6 − i and j′ = 6 − j. The deformation parameter is q.

Finally, (ρ1, ρ2, ..., ρ5) = (3/2, 1/2, 0,−1/2,−3/2).

The quantum group is defined in terms of matrices T = (tij) so that RT1T2 =

T2T1R where T1 = T ⊗ I and T2 = I ⊗ T . For deforming orthogonal groups we also

need to specify a norm that is left invariant under the quantum group elements. This

is done through the introduction of the matrix Ĉ (not to be confused with the C

introduced earlier) so that T tĈT = T ĈT t = Ĉ where (for the specific case of SO(5))

Ĉ =

















q−3/2

q−1/2

1

q1/2

q3/2

















. (2.12)

We can use an SO(5)q invariant constraint of the form xtĈx =constant (where x =

{xi}) to define invariant subspaces of the Euclidean space. With appropriate reality

conditions, this can give rise to different signatures in the classical limit.

Using the R-matrix defined above, we can define the R̂ matrix for our quantum

orthogonal space and it has three distinct eigenvalues: 1/q4,−1/q and q. By explicit

computation using (2.9, 2.10) and (2.1, 2.2, 2.3) we find that the choice of µα that

gives rise to a non-degenerate deformation is µα = −1/q. We write down this algebra

explicitly in an appendix.

This and the other computations done in this article were implemented using the

Mathematica package NCALGEBRA (version 3.7) [26].

3 Choice of Real Form

So far we have worked with complexified groups and their deformations. But since

we are interested in SO(4, 1) which is a specific real form of SO(5;C), we need to

impose a reality condition on the q-group elements. For that, we need a definition

of conjugation (∗-structure). The ∗-structure on the quantum group will induce a

conjugation on the underlying quantum space, and we want our co-ordinates to be

real under this conjugation. In a basis where the co-ordinates and the quantum group
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elements are real, we can write down the metric Ĉ. If the signature of that metric in

the q → 1 limit is {−++++}, we have the real form that we are looking for. This

is the program we will resort to, for writing down SO(4, 1)q. In this section, we will

be working in the single-parameter context.

Using [20, 22], we define a ∗-structure3 by the relation

T ∗ ≡ DĈtT ĈtD−1 (3.1)

where

D =

















1

1

−1

1

1

















.

The idea here is this: from FRT [20], we know of the conjugation ⋆, which is defined

by T ⋆ ≡ ĈtT Ĉt. Since it is known that ⋆ does not lead to the real form that we

are looking for, we use the involution D, to create a new conjugation from ⋆. D can

be shown to respect all Hopf algebra structures: it is a Hopf algebra automorphism.

Before we go further, it should also be mentioned that in order for the conjugation ⋆

to preserve the RTT equations, the R-matrix should satisfy R̄ij
kl = Rlk

ji which works

if q ∈ R.

Using the fact that quantum groups co-act on the quantum space, we can induce

a conjugation on the quantum space which turns out to be x∗ = ĈtDx. As per our

program, our next step would be to find a linear transformation

x → x′ = Mx (3.2)

T → T ′ = MTM−1 (3.3)

such that x′, T ′ are real under their respective conjugations. Under such a transfor-

mation, the metric Ĉ must go to

Ĉ → Ĉ ′ = (M−1)tĈM−1. (3.4)

3A conjugation ∗ on a Hopf algebra A is an algebra anti-automorphism, i.e., ∗(ηa.b) =

η̄(∗(b)).(∗(a)) for all a, b ∈ A and η ∈ C, that also happens to be a co-algebra automorphism,

∆(∗) = (∗ ⊗ ∗)(∆), ǫ(∗) = ǫ and an involution, ∗2 =identity.
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One can check that an M that can do this is,

M =
1√
2

















1 1

1 1

i
√
2

i −i

i −i

















and under it, the matrix Ĉ goes to

Ĉ ′ =



















1
2q3/2

+ q3/2

2
0 0 0 i

2q3/2
− iq3/2

2

0 1
2q1/2

+ q1/2

2
0 i

2q1/2
− iq1/2

2
0

0 0 −1 0 0

0 − i
2q1/2

+ iq1/2

2
0 1

2q1/2
+ q1/2

2
0

− i
2q3/2

+ iq3/2

2
0 0 0 1

2q3/2
+ q3/2

2



















.

It is clear that when q → 1, we get the correct signature with one negative and four

positive eigenvalues. So we finally have a complete definition of our quantum de Sitter

space.

We note here that it is not obvious that all the real forms of the classical groups

exist after q-deformation. Twietmeyer [23] and Aschieri [22] have classified the possi-

ble real forms of SO(2n+1)q, and they find that for real values of q there are 2n real

forms (our de Sitter belongs to this category), and for |q| = 1 there is only one real

form, namely SO(n, n+1)q. Since we expect to get finite dimensional representations

of quantum groups only when q is a root of unity4, for SO(5), these are allowed only

for anti-de Sitter space [13, 14, 15]: with isometry group SO(2, 3). DeSitter symmetry

group can occur only if we choose q to be real, as we saw explicitly.

As already stressed, it might be possible to skirt this issue by working with more

generic (multi-parametric or otherwise) deformations and corresponding ∗-structures.
But we will not be pursuing those lines here. Maybe de Sitter should only be looked

at as a resonance or a metastable state in some fundamental theory like string theory.

4At other values of q, the representation theory of quantum groups is “pretty much isomorphic”

to the representation theory of classical groups.
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5 Appendix

In this appendix we explicitly write down the form of the SO(5)q-covariant dif-

ferential calculus with µα = −1/q as our chosen eigenvalue. The technology is well-

known in the literature, we write down the explicit form here so we can make some

comments.

We first write down the commutators between the coordinates xi where i goes

from 1 to 5.

x1x2 =
1

q
x2x1, x2x5 =

1

q
x5x2 (5.1)

x1x4 =
1

q
x4x1, x4x5 =

1

q
x4x5 (5.2)

x1x3 = qx3x1, x2x3 = qx3x2, x3x4 = qx4x3, x3x5 = qx5x3 (5.3)

q(x1x5 − x5x1) + (q − 1)(x2x4 + qx4x2) + q1/2(q − 1)x3x3 = 0 (5.4)

q(q − 1)(x1x5 − x5x1) + (1− q + q3)x2x4 − q2x4x2 + q5/2(q − 1)x3x3 = 0 (5.5)

q3/2(x1x5 − x5x1) + q1/2(q2x2x4 − x4x2) + (q3 − q2 + q − 1)x3x3 = 0 (5.6)

q3/2(q − 1)(x1x5 − x5x1)− q3/2x2x4 + q1/2(1− q2 + q3)x4x2 − (q − 1)x3x3 = 0 (5.7)

Some of the relations above are redundant. Also, these relations should be thought

of in conjunction with the condition that xtĈx = 3
Λ

which (with the appropriate

reality condition) is the embedding corresponding to de Sitter space. Here Λ could

be interpreted as the cosmological constant. One can rewrite the relations above by

making use of this constraint and eliminating x3x3. For instance, after some algebra
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(5.6) becomes

( 1

q2
x1x5 − q2x1x5

)

+
(1

q
x2x4 − qx4x2

)

=
Λ(1− q4)

3q1/2(1 + q3)
. (5.8)

It should be noted that these deformed commutators constructed a ’la Zumino,

are the same as the ones written down by [20] and [24]. Their prescription was to

split the R-matrix into projection operators so that

R̂ ≡ qPS − q−1PA + q−4P1, (5.9)

and use that to define the deformations according to PA(x⊗ x) = 0. The projectors

are onto the eigen-subspaces, so everything is consistent.

The algebra of the partial derivatives (which is controlled by the matrix F ) can

be obtained from the co-ordinate algebra above if we substitute xi → ∂xi′ , where

i′ = 6− i.

To complete the definition of the deformed calculus, we need to spell out the

algebra that deforms the commutators between the co-ordinates and derivatives. It

turns out that they are, for xi and ∂xj with i = j,

∂x1x1 = 1 + q2x1∂x1 + (q2 − 1)(x2∂x2 + x3∂x3 + x4∂x4) +
(

1− 1

q3

)

(q2 − 1)x5∂x5

(5.10)

∂x2x2 = 1 + q2x2∂x2 + (q2 − 1)(x3∂x3 + x5∂x5) +
(

1− 1

q

)

(q2 − 1)x4∂x4 (5.11)

∂x3x3 = 1 + qx3∂x3 + (q2 − 1)(x4∂x4 + x5∂x5) (5.12)

∂x4x4 = 1 + q2x4∂x4 + (q2 − 1)x5∂x5 (5.13)

∂x5x5 = 1 + q2x5∂x5 (5.14)

and for i 6= j,

∂x1x2 = qx2∂x1 +
( 1

q2
− 1

)

x5∂x4 , ∂x2x1 = qx1∂x2 +
( 1

q2
− 1

)

x4∂x5 (5.15)

∂x1x3 = qx3∂x1 +
1− q2

q3/2
x5∂x3 , ∂x3x1 = qx1∂x3 +

1− q2

q3/2
x3∂x5 (5.16)

∂x1x4 = qx4∂x1 +
1− q2

q
x5∂x2 , ∂x4x1 = qx1∂x4 +

1− q2

q
x2∂x5 (5.17)
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∂x2x3 = qx3∂x2 +
1− q2

q1/2
x4∂x3 , ∂x3x2 = qx2∂x3 +

1− q2

q1/2
x3∂x4 (5.18)

∂x2x5 = qx5∂x2 , ∂x5x2 = qx2∂x5 (5.19)

∂x3x4 = qx4∂x3 , ∂x3x5 = qx5∂x3 , ∂x4x3 = qx3∂x4 , ∂x5x3 = qx3∂x5 , (5.20)

∂x4x5 = qx5∂x4 , ∂x5x4 = qx4∂x5 (5.21)

∂x1x5 = x5∂x1 , ∂x5x1 = x1∂x5 , ∂x2x4 = x4∂x2 , ∂x4x2 = x2∂x4 . (5.22)

This completes the definition of the SO(5)q-covariant calculus on the quantum space.
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