2,613 research outputs found

    Boundary quantum critical phenomena with entanglement renormalization

    Get PDF
    We extend the formalism of entanglement renormalization to the study of boundary critical phenomena. The multi-scale entanglement renormalization ansatz (MERA), in its scale invariant version, offers a very compact approximation to quantum critical ground states. Here we show that, by adding a boundary to the scale invariant MERA, an accurate approximation to the critical ground state of an infinite chain with a boundary is obtained, from which one can extract boundary scaling operators and their scaling dimensions. Our construction, valid for arbitrary critical systems, produces an effective chain with explicit separation of energy scales that relates to Wilson's RG formulation of the Kondo problem. We test the approach by studying the quantum critical Ising model with free and fixed boundary conditions.Comment: 8 pages, 12 figures, for a related work see arXiv:0912.289

    The scattering from generalized Cantor fractals

    Full text link
    We consider a fractal with a variable fractal dimension, which is a generalization of the well known triadic Cantor set. In contrast with the usual Cantor set, the fractal dimension is controlled using a scaling factor, and can vary from zero to one in one dimension and from zero to three in three dimensions. The intensity profile of small-angle scattering from the generalized Cantor fractal in three dimensions is calculated. The system is generated by a set of iterative rules, each iteration corresponding to a certain fractal generation. Small-angle scattering is considered from monodispersive sets, which are randomly oriented and placed. The scattering intensities represent minima and maxima superimposed on a power law decay, with the exponent equal to the fractal dimension of the scatterer, but the minima and maxima are damped with increasing polydispersity of the fractal sets. It is shown that for a finite generation of the fractal, the exponent changes at sufficiently large wave vectors from the fractal dimension to four, the value given by the usual Porod law. It is shown that the number of particles of which the fractal is composed can be estimated from the value of the boundary between the fractal and Porod regions. The radius of gyration of the fractal is calculated analytically.Comment: 8 pages, 4 figures, accepted for publication in J. Appl. Crys

    Ocupação tardia e o desenvolvimento da agropecuária no Estado de Rondônia Uma história da bovinocultura no desenvolvimento regional.

    Get PDF
    Neste artigo se discute a ocupação tardia e sem planejamento de Rondônia e sua influência na bovinocultura. É uma pesquisa bibliográfica e qualitativa na qual foram levantadas informações sobre penetração do gado bovino no Estado do século XVIII ao XXI cujo objetivo é mostrar a configuração da atividade no desenvolvimento regional. Extraiu-se que somente a partir da década de setenta a criação de gado tornou-se importante para a economia regional, mas faltaram políticas públicas de ordenação e planejamento do território ocupado, tornando-a uma atividade competitiva. Aqui as baixas tecnologias provocaram a substituição da floresta pela criação extensiva, e sabe-se que na exploração bovina feita de forma correta poucos danos se verificam em sua área de atuação

    A Theory of Cheap Control in Embodied Systems

    Full text link
    We present a framework for designing cheap control architectures for embodied agents. Our derivation is guided by the classical problem of universal approximation, whereby we explore the possibility of exploiting the agent's embodiment for a new and more efficient universal approximation of behaviors generated by sensorimotor control. This embodied universal approximation is compared with the classical non-embodied universal approximation. To exemplify our approach, we present a detailed quantitative case study for policy models defined in terms of conditional restricted Boltzmann machines. In contrast to non-embodied universal approximation, which requires an exponential number of parameters, in the embodied setting we are able to generate all possible behaviors with a drastically smaller model, thus obtaining cheap universal approximation. We test and corroborate the theory experimentally with a six-legged walking machine. The experiments show that the sufficient controller complexity predicted by our theory is tight, which means that the theory has direct practical implications. Keywords: cheap design, embodiment, sensorimotor loop, universal approximation, conditional restricted Boltzmann machineComment: 27 pages, 10 figure

    Some Experiments on the influence of Problem Hardness in Morphological Development based Learning of Neural Controllers

    Get PDF
    Natural beings undergo a morphological development process of their bodies while they are learning and adapting to the environments they face from infancy to adulthood. In fact, this is the period where the most important learning pro-cesses, those that will support learning as adults, will take place. However, in artificial systems, this interaction between morphological development and learning, and its possible advantages, have seldom been considered. In this line, this paper seeks to provide some insights into how morphological development can be harnessed in order to facilitate learning in em-bodied systems facing tasks or domains that are hard to learn. In particular, here we will concentrate on whether morphological development can really provide any advantage when learning complex tasks and whether its relevance towards learning in-creases as tasks become harder. To this end, we present the results of some initial experiments on the application of morpho-logical development to learning to walk in three cases, that of a quadruped, a hexapod and that of an octopod. These results seem to confirm that as task learning difficulty increases the application of morphological development to learning becomes more advantageous.Comment: 10 pages, 4 figure

    A Hardy's Uncertainty Principle Lemma in Weak Commutation Relations of Heisenberg-Lie Algebra

    Full text link
    In this article we consider linear operators satisfying a generalized commutation relation of a type of the Heisenberg-Lie algebra. It is proven that a generalized inequality of the Hardy's uncertainty principle lemma follows. Its applications to time operators and abstract Dirac operators are also investigated

    Perceptual and Contextual Sources of Athletic Training Confidence: The Transition to Professional Entry Level Master’s Programs

    Get PDF
    Introduction: The shift of athletic training education from undergraduate degrees to professional master’s degrees and the prominence of computer-based credentialing may impact the hands-on experiences beneficial for developing confidence in athletic training competency domains. Health care provider confidence is critical for clinical skill development, performance and enhancing patient care. Purpose: To examine domain specific efficacy, its sources, learning contexts (i.e., classroom, laboratory, clinical settings) and clinical characteristics by program types. Method: Descriptive, cross-sectional design where 178 Athletic Trainers (AT; age 24.25 + 3.76, n = 72 male, n = 106 female) participated in the study (Master’s Program (MP) = 38; Undergraduate Program (UG) = 140). A questionnaire examining athletic training confidence was administered throughout multiple universities with accredited athletic training programs. Background characteristics, certification exam attempts, and programmatic characteristics were also ascertained. Results: Clinical settings were similar in both program types and there were few differences in domain-specific efficacy. Imaginal experiences, verbal persuasion and emotional states sources of efficacy differentiated master’s from undergraduate students. Conclusions: Sources of efficacy (e.g. vicarious experiences) occur naturally in athletic training educational settings; however, these sources need to be utilized. Educators should be informed about efficacy sources and devise strategies targeting each source for implementation across evolving learning contexts

    Dual-function artificial molecular motors performing rotation and photoluminescence

    Get PDF
    Molecular machines have caused one of the greatest paradigm shifts in chemistry, and by powering artificial mechanical molecular systems and enabling autonomous motion, they are expected to be at the heart of exciting new technologies. One of the biggest challenges that still needs to be addressed is designing the involved molecules to combine different orthogonally controllable functions. Here, we present a prototype of artificial molecular motors exhibiting the dual function of rotary motion and photoluminescence. Both properties are controlled by light of different wavelengths or by exploiting motors’ outstanding two-photon absorption properties using low-intensity near-infrared light. This provides a noninvasive way to both locate and operate these motors in situ, essential for the application of molecular machines in complex (bio)environments

    Evolution of dopant-induced helium nanoplasmas

    Get PDF
    Two-component nanoplasmas generated by strong-field ionization of doped helium nanodroplets are studied in a pump-probe experiment using few-cycle laser pulses in combination with molecular dynamics simulations. High yields of helium ions and a pronounced, droplet size-dependent resonance structure in the pump-probe transients reveal the evolution of the dopant-induced helium nanoplasma. The pump-probe dynamics is interpreted in terms of strong inner ionization by the pump pulse and resonant heating by the probe pulse which controls the final charge states detected via the frustration of electron-ion recombination
    • …
    corecore