1,804 research outputs found

    Laboratory Synthesis of Molecular Hydrogen on Surfaces of Astrophysical Interest

    Get PDF
    We report on the first results of experiments to measure the recombination rate of hydrogen on surfaces of astrophysical interest. Our measurements give lower values for the recombination efficiency (sticking probability S x probability of recombination upon H-H encounter γ\gamma) than model-based estimates. We propose that our results can be reconciled with average estimates of the recombination rate (1/2 n(H) n(g) v(H)A S γ\gamma) from astronomical observations, if the actual surface of an average grain is rougher, and its area bigger, than the one considered in models.Comment: 13 pages plus 5 figures (only change: this version has 5 figures included); this paper is to appear in Astrophysical Journal Letters

    Early respiratory viral infections in infants with cystic fibrosis

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.Background Viral infections contribute to morbidity in cystic fibrosis (CF), but the impact of respiratory viruses on the development of airway disease is poorly understood. Methods Infants with CF identified by newborn screening were enrolled prior to 4 months of age to participate in a prospective observational study at 4 centers. Clinical data were collected at clinic visits and weekly phone calls. Multiplex PCR assays were performed on nasopharyngeal swabs to detect respiratory viruses during routine visits and when symptomatic. Participants underwent bronchoscopy with bronchoalveolar lavage (BAL) and a subset underwent pulmonary function testing. We present findings through 8.5 months of life. Results Seventy infants were enrolled, mean age 3.1 ± 0.8 months. Rhinovirus was the most prevalent virus (66%), followed by parainfluenza (19%), and coronavirus (16%). Participants had a median of 1.5 viral positive swabs (range 0–10). Past viral infection was associated with elevated neutrophil concentrations and bacterial isolates in BAL fluid, including recovery of classic CF bacterial pathogens. When antibiotics were prescribed for respiratory-related indications, viruses were identified in 52% of those instances. Conclusions Early viral infections were associated with greater neutrophilic inflammation and bacterial pathogens. Early viral infections appear to contribute to initiation of lower airway inflammation in infants with CF. Antibiotics were commonly prescribed in the setting of a viral infection. Future investigations examining longitudinal relationships between viral infections, airway microbiome, and antibiotic use will allow us to elucidate the interplay between these factors in young children with CF

    Rapidity Distributions of Dileptons from a Hadronizing Quark-Gluon Plasma

    Get PDF
    It has been predicted that dilepton production may be used as a quark-gluon plasma probe. We calculate the rapidity distributions of thermal dileptons produced by an evolving quark-gluon plasma assuming a longitudinal scaling expansion with initial conditions locally determined from the hadronic rapidity density. These distributions are compared with Drell-Yan production and semileptonic charm decays at invariant mass M=2M = 2, 4, and 6 GeV.Comment: 17 pages (standard LaTeX), 6 figures (available as topdraw files or printed versions upon request), GSI-93-6

    Preoperative systemic inflammation predicts postoperative infectious complications in patients undergoing curative resection for colorectal cancer

    Get PDF
    The presence of systemic inflammation before surgery, as evidenced by the glasgow prognostic score (mGPS), predicts poor long-term survival in colorectal cancer. The aim was to examine the relationship between the preoperative mGPS and the development of postoperative complications in patients undergoing potentially curative resection for colorectal cancer. Patients (n=455) who underwent potentially curative resections between 2003 and 2007 were assessed consecutively, and details were recorded in a database. The majority of patients presented for elective surgery (85%) were over the age of 65 years (70%), were male (58%), were deprived (53%), and had TNM stage I/II disease (61%), had preoperative haemoglobin (56%), white cell count (87%) and mGPS 0 (58%) in the normal range. After surgery, 86 (19%) patients developed a postoperative complication; 70 (81%) of which were infectious complications. On multivariate analysis, peritoneal soiling (P<0.01), elevated preoperative white cell count (P<0.05) and mGPS (P<0.01) were independently associated with increased risk of developing a postoperative infection. In elective patients, only the mGPS (OR=1.75, 95% CI=1.17-2.63, P=0.007) was significantly associated with increased risk of developing a postoperative infection. Preoperative elevated mGPS predicts increased postoperative infectious complications in patients undergoing potentially curative resection for colorectal cancer

    QUaD: A High-Resolution Cosmic Microwave Background Polarimeter

    Get PDF
    We describe the QUaD experiment, a millimeter-wavelength polarimeter designed to observe the Cosmic Microwave Background (CMB) from a site at the South Pole. The experiment comprises a 2.64 m Cassegrain telescope equipped with a cryogenically cooled receiver containing an array of 62 polarization-sensitive bolometers. The focal plane contains pixels at two different frequency bands, 100 GHz and 150 GHz, with angular resolutions of 5 arcmin and 3.5 arcmin, respectively. The high angular resolution allows observation of CMB temperature and polarization anisotropies over a wide range of scales. The instrument commenced operation in early 2005 and collected science data during three successive Austral winter seasons of observation.Comment: 23 pages, author list and text updated to reflect published versio

    The Robinson Gravitational Wave Background Telescope (BICEP): a bolometric large angular scale CMB polarimeter

    Get PDF
    The Robinson Telescope (BICEP) is a ground-based millimeter-wave bolometric array designed to study the polarization of the cosmic microwave background radiation (CMB) and galactic foreground emission. Such measurements probe the energy scale of the inflationary epoch, tighten constraints on cosmological parameters, and verify our current understanding of CMB physics. Robinson consists of a 250-mm aperture refractive telescope that provides an instantaneous field-of-view of 17 degrees with angular resolution of 55 and 37 arcminutes at 100 GHz and 150 GHz, respectively. Forty-nine pair of polarization-sensitive bolometers are cooled to 250 mK using a 4He/3He/3He sorption fridge system, and coupled to incoming radiation via corrugated feed horns. The all-refractive optics is cooled to 4 K to minimize polarization systematics and instrument loading. The fully steerable 3-axis mount is capable of continuous boresight rotation or azimuth scanning at speeds up to 5 deg/s. Robinson has begun its first season of observation at the South Pole. Given the measured performance of the instrument along with the excellent observing environment, Robinson will measure the E-mode polarization with high sensitivity, and probe for the B-modes to unprecedented depths. In this paper we discuss aspects of the instrument design and their scientific motivations, scanning and operational strategies, and the results of initial testing and observations.Comment: 18 pages, 11 figures. To appear in Millimeter and Submillimeter Detectors and Instrumentation for Astronomy III, Proceedings of SPIE, 6275, 200

    Scanning the Quark-Gluon Plasma with Charmonium

    Full text link
    We suggest the variation of charmonium suppression with Feynman x_F in heavy ion collisions as a novel and sensitive probe for the properties of the matter created in such reactions. In contrast to the proton-nucleus case where nuclear suppression is weakest at small x_F, final state interactions with the comoving matter create a minimum at x_F=0, which is especially deep and narrow if a quark-gluon plasma is formed. While a particularly strong effect is predicted at SPS, at the higher RHIC energy it overlaps with the expected sharp variation with x_F of nuclear effects and needs comparison with proton-nucleus data. If thermal enhancement of J/\Psi production takes over at the energies of RHIC and LHC, it will form an easily identified peak, rather than dip in x_F dependence. We predict a steep dependence on centrality and suggest that this new probe is complementary to the dependence on transverse energy, and is more sensitive to a scenario of final state interactions.Comment: 5 pages including 3 figures. Stylistic and clarifying corrections are mad

    IGR J18483-0311: an accreting X-ray pulsar observed by INTEGRAL

    Get PDF
    IGR J18483-0311 is a poorly known transient hard X-ray source discovered by INTEGRAL during observations of the Galactic Center region performed between 23--28 April 2003. Aims: To detect new outbursts from IGR J18483-0311 using INTEGRAL and archival Swift XRT observations and finally to characterize the nature of this source using the optical/near-infrared (NIR) information available through catalogue searches. Results: We report on 5 newly discovered outbursts from IGR J18483-0311 detected by INTEGRAL.For two of them it was possible to constrain a duration of the order of a few days. The strongest outburst reached a peak flux of 120 mCrab (20--100 keV): its broad band JEM--X/ISGRI spectrum (3--50 keV) is best fitted by an absorbed cutoff power law with photon index=1.4+/-0.3, cutoff energy of ~22 keV and Nh ~9x10^22 cm^-2. Timing analysis of INTEGRAL data allowed us to identify periodicities of 18.52 days and 21.0526 seconds which are likely the orbital period of the system and the spin period of the X-ray pulsar respectively. Swift XRT observations of IGR J18483-0311 provided a very accurate source position which strongly indicates a highly reddened star in the USNO--B1.0 and 2MASS catalogues as its possible optical/NIR counterpart. Conclusions: The X-ray spectral shape, the periods of 18.52 days and 21.0526 seconds, the high intrinsic absorption, the location in the direction of the Scutum spiral arm and the highly reddened optical object as possible counterpart, all favour the hypothesis that IGR J18483-0311 is a HMXB with a neutron star as compact companion. The system is most likely a Be X-ray binary, but a Supergiant Fast X-ray Transient nature can not be entirely excluded.Comment: accepted for publication in A&A, 10 pages, 17 figures, 4 table

    Hypertonic induction of aquaporin-5 expression through an ERK-dependent pathway

    Get PDF
    Aquaporin-5 (AQP5) is a water channel protein expressed in lung, salivary gland, and lacrimal gland epithelia. Each of these sites may experience fluctuations in surface liquid osmolarity; however, osmotic regulation of AQP5 expression has not been reported. This study demonstrates that AQP5 is induced by hypertonic stress and that induction requires activation of extracellular signal-regulated kinase (ERK). Incubation of mouse lung epithelial cells (MLE-15) in hypertonic medium produced a dose-dependent increase in AQP5 expression; AQP5 protein peaked by 24 h and returned to baseline levels within hours of returning cells to isotonic medium. AQP5 induction was observed only with relatively impermeable solutes, suggesting an osmotic pressure gradient is required for induction. ERK was selectively activated in MLE-15 cells by hypertonic stress, and inhibition of ERK activation with two distinct mitogen-activated extracellular regulated kinase kinase (MEK) inhibitors, U0126 and PD98059, blocked AQP5 induction. AQP5 induction was also observed in the lung, salivary, and lacrimal glands of hyperosmolar rats, suggesting potential physiologic relevance for osmotic regulation of AQP5 expression. This report provides the first example of hypertonic induction of an extrarenal aquaporin, as well as the first association between mitogen-activated protein kinase signaling and aquaporin expression

    CMB polarimetry with BICEP: instrument characterization, calibration, and performance

    Get PDF
    BICEP is a ground-based millimeter-wave bolometric array designed to target the primordial gravity wave signature on the polarization of the cosmic microwave background (CMB) at degree angular scales. Currently in its third year of operation at the South Pole, BICEP is measuring the CMB polarization with unprecedented sensitivity at 100 and 150 GHz in the cleanest available 2% of the sky, as well as deriving independent constraints on the diffuse polarized foregrounds with select observations on and off the Galactic plane. Instrument calibrations are discussed in the context of rigorous control of systematic errors, and the performance during the first two years of the experiment is reviewed.Comment: 12 pages, 15 figures, updated version of a paper accepted for Millimeter and Submillimeter Detectors and Instrumentation for Astronomy IV, Proceedings of SPIE, 7020, 200
    corecore