184 research outputs found

    On the CFT duals for near-extremal black holes

    Full text link
    We consider Kerr-Newman-AdS-dS black holes near extremality and work out the near-horizon geometry of these near-extremal black holes. We identify the exact U(1)_L x U(1)_R isometries of the near-horizon geometry and provide boundary conditions enhancing them to a pair of commuting Virasoro algebras. The conserved charges of the corresponding asymptotic symmetries are found to be well defined and non-vanishing and to yield central charges c_L\neq0 and c_R=0. The Cardy formula subsequently reproduces the Bekenstein-Hawking entropy of the black hole. This suggests that the near-extremal Kerr-Newman-AdS-dS black hole is holographically dual to a non-chiral two-dimensional conformal field theory.Comment: 11 page

    A near-NHEK/CFT correspondence

    Full text link
    We consider excitations around the recently introduced near-NHEK metric describing the near-horizon geometry of the near-extremal four-dimensional Kerr black hole. This geometry has a U(1)_L x U(1)_R isometry group which can be enhanced to a pair of commuting Virasoro algebras. We present boundary conditions for which the conserved charges of the corresponding asymptotic symmetries are well defined and non-vanishing and find the central charges c_L=12J/hbar and c_R=0 where J is the angular momentum of the black hole. Applying the Cardy formula reproduces the Bekenstein-Hawking entropy of the black hole. This suggests that the near-extremal Kerr black hole is holographically dual to a non-chiral two-dimensional conformal field theory.Comment: 11 pages, v2: references updated, adde

    On the Stress Tensor of Kerr/CFT

    Full text link
    The recently-conjectured Kerr/CFT correspondence posits a field theory dual to dynamics in the near-horizon region of an extreme Kerr black hole with certain boundary conditions. We construct a boundary stress tensor for this theory via covariant phase space techniques. The structure of the stress tensor indicates that any dual theory is a discrete light cone quantum theory, in agreement with recent arguments by Balasubramanian et al. The key technical step in our construction is the addition of an appropriate counter-term to the symplectic structure, which is necessary to make the theory fully covariant and to resolve a subtle problem involving the integrability of charges.Comment: 19 page

    G2 Dualities in D=5 Supergravity and Black Strings

    Full text link
    Five dimensional minimal supergravity dimensionally reduced on two commuting Killing directions gives rise to a G2 coset model. The symmetry group of the coset model can be used to generate new solutions by applying group transformations on a seed solution. We show that on a general solution the generators belonging to the Cartan and nilpotent subalgebras of G2 act as scaling and gauge transformations, respectively. The remaining generators of G2 form a sl(2,R)+sl(2,R) subalgebra that can be used to generate non-trivial charges. We use these generators to generalize the five dimensional Kerr string in a number of ways. In particular, we construct the spinning electric and spinning magnetic black strings of five dimensional minimal supergravity. We analyze physical properties of these black strings and study their thermodynamics. We also explore their relation to black rings.Comment: typos corrected (26 pages + appendices, 2 figures

    Relaxing the Parity Conditions of Asymptotically Flat Gravity

    Full text link
    Four-dimensional asymptotically flat spacetimes at spatial infinity are defined from first principles without imposing parity conditions or restrictions on the Weyl tensor. The Einstein-Hilbert action is shown to be a correct variational principle when it is supplemented by an anomalous counter-term which breaks asymptotic translation, supertranslation and logarithmic translation invariance. Poincar\'e transformations as well as supertranslations and logarithmic translations are associated with finite and conserved charges which represent the asymptotic symmetry group. Lorentz charges as well as logarithmic translations transform anomalously under a change of regulator. Lorentz charges are generally non-linear functionals of the asymptotic fields but reduce to well-known linear expressions when parity conditions hold. We also define a covariant phase space of asymptotically flat spacetimes with parity conditions but without restrictions on the Weyl tensor. In this phase space, the anomaly plays classically no dynamical role. Supertranslations are pure gauge and the asymptotic symmetry group is the expected Poincar\'e group.Comment: Four equations corrected. Two references adde

    Microscopics of Extremal Kerr from Spinning M5 Branes

    Get PDF
    We show that the spinning magnetic one-brane in minimal five-dimensional supergravity admits a decoupling limit that interpolates smoothly between a self-dual null orbifold of AdS_3 \times S^2 and the near-horizon limit of the extremal Kerr black hole times a circle. We use this interpolating solution to understand the field theory dual to spinning M5 branes as a deformation of the Discrete Light Cone Quantized (DLCQ) Maldacena-Stominger-Witten (MSW) CFT. In particular, the conformal weights of the operators dual to the deformation around AdS_3 \times S^2 are calculated. We present pieces of evidence showing that a CFT dual to the four-dimensional extremal Kerr can be obtained from the deformed MSW CFT.Comment: 5 page

    Kerr/CFT, dipole theories and nonrelativistic CFTs

    Get PDF
    We study solutions of type IIB supergravity which are SL(2,R) x SU(2) x U(1)^2 invariant deformations of AdS_3 x S^3 x K3 and take the form of products of self-dual spacelike warped AdS_3 and a deformed three-sphere. One of these backgrounds has been recently argued to be relevant for a derivation of Kerr/CFT from string theory, whereas the remaining ones are holographic duals of two-dimensional dipole theories and their S-duals. We show that each of these backgrounds is holographically dual to a deformation of the DLCQ of the D1-D5 CFT by a specific supersymmetric (1,2) operator, which we write down explicitly in terms of twist operators at the free orbifold point. The deforming operator is argued to be exactly marginal with respect to the zero-dimensional nonrelativistic conformal (or Schroedinger) group - which is simply SL(2,R)_L x U(1)_R. Moreover, in the supergravity limit of large N and strong coupling, no other single-trace operators are turned on. We thus propose that the field theory duals to the backgrounds of interest are nonrelativistic CFTs defined by adding the single Schroedinger-invariant (1,2) operator mentioned above to the original CFT action. Our analysis indicates that the rotating extremal black holes we study are best thought of as finite right-moving temperature (non-supersymmetric) states in the above-defined supersymmetric nonrelativistic CFT and hints towards a more general connection between Kerr/CFT and two-dimensional non-relativistic CFTs.Comment: 48+8 pages, 4 figures; minor corrections and references adde

    No Dynamics in the Extremal Kerr Throat

    Full text link
    Motivated by the Kerr/CFT conjecture, we explore solutions of vacuum general relativity whose asymptotic behavior agrees with that of the extremal Kerr throat, sometimes called the Near-Horizon Extreme Kerr (NHEK) geometry. We argue that all such solutions are diffeomorphic to the NHEK geometry itself. The logic proceeds in two steps. We first argue that certain charges must vanish at all times for any solution with NHEK asymptotics. We then analyze these charges in detail for linearized solutions. Though one can choose the relevant charges to vanish at any initial time, these charges are not conserved. As a result, requiring the charges to vanish at all times is a much stronger condition. We argue that all solutions satisfying this condition are diffeomorphic to the NHEK metric.Comment: 42 pages, 3 figures. v3: minor clarifications and correction

    The ANTARES Optical Beacon System

    Get PDF
    ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It consists of a three dimensional array of photomultiplier tubes that can detect the Cherenkov light induced by charged particles produced in the interactions of neutrinos with the surrounding medium. High angular resolution can be achieved, in particular when a muon is produced, provided that the Cherenkov photons are detected with sufficient timing precision. Considerations of the intrinsic time uncertainties stemming from the transit time spread in the photomultiplier tubes and the mechanism of transmission of light in sea water lead to the conclusion that a relative time accuracy of the order of 0.5 ns is desirable. Accordingly, different time calibration systems have been developed for the ANTARES telescope. In this article, a system based on Optical Beacons, a set of external and well-controlled pulsed light sources located throughout the detector, is described. This calibration system takes into account the optical properties of sea water, which is used as the detection volume of the ANTARES telescope. The design, tests, construction and first results of the two types of beacons, LED and laser-based, are presented.Comment: 21 pages, 18 figures, submitted to Nucl. Instr. and Meth. Phys. Res.

    First results of the Instrumentation Line for the deep-sea ANTARES neutrino telescope

    Get PDF
    In 2005, the ANTARES Collaboration deployed and operated at a depth of 2500 m a so-called Mini Instrumentation Line equipped with Optical Modules (MILOM) at the ANTARES site. The various data acquired during the continuous operation from April to December 2005 of the MILOM confirm the satisfactory performance of the Optical Modules, their front-end electronics and readout system. as well as the calibration devices of the detector. The in situ measurement of the Optical Module time response yields a resolution better than 0.5 ns. The performance of the acoustic positioning system, which enables the spatial reconstruction of the ANTARES detector with a precision of about 10 cm, is verified. These results demonstrate that with the full ANTARES neutrino telescope the design angular resolution of better than 0.3 degrees can be realistically achieved
    corecore