501 research outputs found

    The Moon at thermal infrared wavelengths: A benchmark for asteroid thermal models

    Get PDF
    Thermal-infrared measurements of asteroids are crucial for deriving the objects' sizes, albedos, and also the thermophysical properties of the surface material. Depending on the available data, a range of simple to complex thermal models are applied to achieve specific science goals. However, testing these models is often a difficult process and the uncertainties of the derived parameters are not easy to estimate. Here, we make an attempt to verify a widely accepted thermophysical model (TPM) against unique thermal infrared (IR), full-disk, and well-calibrated measurements of the Moon. The data were obtained by the High-resolution InfraRed Sounder (HIRS) instruments on board a fleet of Earth weather satellites that serendipitously scan over the Moon. We found 22 Moon intrusions, taken in 19 channels between 3.75 micron and 15.0 micron, and over a wide phase angle range from -73.1 deg to +73.8 deg. The similarity between these Moon data and typical asteroid spectral-IR energy distributions allows us to benchmark the TPM concepts and to point out problematic aspects. The TPM predictions match the HIRS measurements within 5% (10% at the shortest wavelengths below 5 micron when using the Moon's known properties (size, shape, spin, albedo, thermal inertia, roughness) in combination with a newly established wavelength-dependent hemispherical emissivity. In the 5-7.5 micron and in the 9.5 to 11 micron ranges, the global emissivity model deviates considerably from the known lunar sample spectra. Our findings will influence radiometric studies of near-Earth and main-belt asteroids in cases where only short-wavelength data (from e.g., NEOWISE, the warm Spitzer mission, or ground-based M-band measurements) are available. The new, full-disk IR Moon model will also be used for the calibration of IR instrumentation on interplanetary missions (e.g., for Hayabusa-2) and weather satellites.Comment: 21 pages, 9 figures, 7 tables, accepted for publication in Astronomy & Astrophysics in March 202

    Inferring statistics of planet populations by means of automated microlensing searches

    Get PDF
    (abridged) The study of other worlds is key to understanding our own, and not only provides clues to the origin of our civilization, but also looks into its future. Rather than in identifying nearby systems and learning about their individual properties, the main value of the technique of gravitational microlensing is in obtaining the statistics of planetary populations within the Milky Way and beyond. Only the complementarity of different techniques currently employed promises to yield a complete picture of planet formation that has sufficient predictive power to let us understand how habitable worlds like ours evolve, and how abundant such systems are in the Universe. A cooperative three-step strategy of survey, follow-up, and anomaly monitoring of microlensing targets, realized by means of an automated expert system and a network of ground-based telescopes is ready right now to be used to obtain a first census of cool planets with masses reaching even below that of Earth orbiting K and M dwarfs in two distinct stellar populations, namely the Galactic bulge and disk. The hunt for extra-solar planets acts as a principal science driver for time-domain astronomy with robotic-telescope networks adopting fully-automated strategies. Several initiatives, both into facilities as well as into advanced software and strategies, are supposed to see the capabilities of gravitational microlensing programmes step-wise increasing over the next 10 years. New opportunities will show up with high-precision astrometry becoming available and studying the abundance of planets around stars in neighbouring galaxies becoming possible. Finally, we should not miss out on sharing the vision with the general public, and make its realization to profit not only the scientists but all the wider society.Comment: 10 pages in PDF format. White paper submitted to ESA's Exo-Planet Roadmap Advisory Team (EPR-AT); typos corrected. The embedded figures are available from the author on request. See also "Towards A Census of Earth-mass Exo-planets with Gravitational Microlensing" by J.P. Beaulieu, E. Kerins, S. Mao et al. (arXiv:0808.0005

    Dopaminergic modulation of affective and social deficits induced by prenatal glucocorticoid exposure

    Get PDF
    Prenatal stress or exposure to elevated levels of glucocorticoids (GCs) can impair specific neurobehavioral circuits leading to alterations in emotional processes later in life. In turn, emotional deficits may interfere with the quality and degree of social interaction. Here, by using a comprehensive behavioral approach in combination with the measurement of ultrasonic vocalizations, we show that in utero GC (iuGC)-exposed animals present increased immobility in the forced swimming test, pronounced anhedonic behavior (both anticipatory and consummatory), and an impairment in social interaction at different life stages. Importantly, we also found that social behavioral expression is highly dependent on the affective status of the partner. A profound reduction in mesolimbic dopaminergic transmission was found in iuGC animals, suggesting a key role for dopamine (DA) in the etiology of the observed behavioral deficits. Confirming this idea, we present evidence that a simple pharmacological approach—acute L-3,4-dihydroxyphenylacetic acid (L-DOPA) oral administration, is able to normalize DA levels in iuGC animals, with a concomitant amelioration of several dimensions of the emotional and social behaviors. Interestingly, L-DOPA effects in control individuals were not so straightforward; suggesting that both hypo- and hyperdopaminergia are detrimental in the context of such complex behaviors.This work was supported by a grant of Institute for the Study of Affective Neuroscience (ISAN) and Janssen Neurosciences Prize. SB and AJR have Fundacao para a Ciencia e Tecnologia (FCT) fellowships (SFRH/BD/89936/2012; SFRH/BPD/33611/2009)

    Observations of Ultraluminous Infrared Galaxies with the Infrared Spectrograph on the Spitzer Space Telescope: Early Results on Mrk 1014, Mrk 463, and UGC 5101

    Full text link
    We present spectra taken with the Infrared Spectrograph on Spitzer covering the 5-38micron region of three Ultraluminous Infrared Galaxies (ULIRGs): Mrk 1014 (z=0.163), and Mrk 463 (z=0.051), and UGC 5101 (z=0.039). The continua of UGC 5101 and Mrk 463 show strong silicate absorption suggesting significant optical depths to the nuclei at 10microns. UGC 5101 also shows the clear presence of water ice in absorption. PAH emission features are seen in both Mrk 1014 and UGC 5101, including the 16.4micron line in UGC 5101. The fine structure lines are consistent with dominant AGN power sources in both Mrk 1014 and Mrk 463. In UGC 5101 we detect the [NeV] 14.3micron emission line providing the first direct evidence for a buried AGN in the mid-infrared. The detection of the 9.66micron and 17.03micron H2_{2} emission lines in both UGC 5101 and Mrk 463 suggest that the warm molecular gas accounts for 22% and 48% of the total molecular gas masses in these galaxies.Comment: Accepted in ApJ Sup. Spitzer Special Issue, 4 pages, 3 figure

    ISOPHOT far-infrared serendipity sky survey

    Get PDF
    The ISOPHOT Serendipity Survey utilizes the slew time between ISO's pointed observations with strip scanning measurements of the sky in the far-IR at 170 micrometers . The slews contain information about two fundamentally different types of objects, namely unresolved galactic and extragalactic far-IR sources as well as extended regions of galactic cirrus emission. Since the structure of the obtained data is almost unique, the development of dedicated software to extract astrophysically interesting parameters for the crossed sources is mandatory. Data analysis is currently in its early stages and concentrates on the detection of point sources. First results from an investigation of a high galactic latitude field near the North Galactic Pole indicate that the detection completeness with respect to previously known IRAS sources will be almost 100 percent for sources with f(subscript 100micrometers > 2 Jy, dropping below approximately equals 50 percent for f(subscript 100micrometers < 1.5 Jy. Nevertheless, even faint sources down to a level of f(subscript 170micrometers approximately equals 1 Jy can be detected. Since the majority of the detected point sources are galaxies, the Serendipity Survey will result in a large database of approximately equals 2000 galaxies

    RoboTAP: Target priorities for robotic microlensing observations

    Get PDF
    Context. The ability to automatically select scientifically-important transient events from an alert stream of many such events, and to conduct follow-up observations in response, will become increasingly important in astronomy. With wide-angle time domain surveys pushing to fainter limiting magnitudes, the capability to follow-up on transient alerts far exceeds our follow-up telescope resources, and effective target prioritization becomes essential. The RoboNet-II microlensing program is a pathfinder project, which has developed an automated target selection process (RoboTAP) for gravitational microlensing events, which are observed in real time using the Las Cumbres Observatory telescope network. Aims. Follow-up telescopes typically have a much smaller field of view compared to surveys, therefore the most promising microlensing events must be automatically selected at any given time from an annual sample exceeding 2000 events. The main challenge is to select between events with a high planet detection sensitivity, with the aim of detecting many planets and characterizing planetary anomalies. Methods. Our target selection algorithm is a hybrid system based on estimates of the planet detection zones around a microlens. It follows automatic anomaly alerts and respects the expected survey coverage of specific events. Results. We introduce the RoboTAP algorithm, whose purpose is to select and prioritize microlensing events with high sensitivity to planetary companions. In this work, we determine the planet sensitivity of the RoboNet follow-up program and provide a working example of how a broker can be designed for a real-life transient science program conducting follow-up observations in response to alerts; we explore the issues that will confront similar programs being developed for the Large Synoptic Survey Telescope (LSST) and other time domain surveys

    I. Flux and color variations of the quadruply imaged quasar HE 0435-1223

    Get PDF
    aims: We present VRi photometric observations of the quadruply imaged quasar HE 0435-1223, carried out with the Danish 1.54m telescope at the La Silla Observatory. Our aim was to monitor and study the magnitudes and colors of each lensed component as a function of time. methods: We monitored the object during two seasons (2008 and 2009) in the VRi spectral bands, and reduced the data with two independent techniques: difference imaging and PSF (Point Spread Function) fitting.results: Between these two seasons, our results show an evident decrease in flux by ~0.2-0.4 magnitudes of the four lensed components in the three filters. We also found a significant increase (~0.05-0.015) in their V-R and R-i color indices. conclusions: These flux and color variations are very likely caused by intrinsic variations of the quasar between the observed epochs. Microlensing effects probably also affect the brightest "A" lensed component.Comment: 10 pages, 8 figure

    The Transiting System GJ1214: High-Precision Defocused Transit Observations and a Search for Evidence of Transit Timing Variation

    Get PDF
    Aims: We present 11 high-precision photometric transit observations of the transiting super-Earth planet GJ1214b. Combining these data with observations from other authors, we investigate the ephemeris for possible signs of transit timing variations (TTVs) using a Bayesian approach. Methods: The observations were obtained using telescope-defocusing techniques, and achieve a high precision with random errors in the photometry as low as 1mmag per point. To investigate the possibility of TTVs in the light curve, we calculate the overall probability of a TTV signal using Bayesian methods. Results: The observations are used to determine the photometric parameters and the physical properties of the GJ1214 system. Our results are in good agreement with published values. Individual times of mid-transit are measured with uncertainties as low as 10s, allowing us to reduce the uncertainty in the orbital period by a factor of two. Conclusions: A Bayesian analysis reveals that it is highly improbable that the observed transit times is explained by TTV, when compared with the simpler alternative of a linear ephemeris.Comment: Submitted to A&
    corecore