17 research outputs found

    Two-Dimensional Electrophoresis of Tau Mutants Reveals Specific Phosphorylation Pattern Likely Linked to Early Tau Conformational Changes

    Get PDF
    The role of Tau phosphorylation in neurofibrillary degeneration linked to Alzheimer's disease remains to be established. While transgenic mice based on FTDP-17 Tau mutations recapitulate hallmarks of neurofibrillary degeneration, cell models could be helpful for exploratory studies on molecular mechanisms underlying Tau pathology. Here, “human neuronal cell lines” overexpressing Wild Type or mutated Tau were established. Two-dimensional electrophoresis highlights that mutated Tau displayed a specific phosphorylation pattern, which occurs in parallel to the formation of Tau clusters as visualized by electron microscopy. In fact, this pattern is also displayed before Tau pathology onset in a well established mouse model relevant to Tau aggregation in Alzheimer's disease. This study suggests first that pathological Tau mutations may change the distribution of phosphate groups. Secondly, it is possible that this molecular event could be one of the first Tau modifications in the neurofibrillary degenerative process, as this phenomenon appears prior to Tau pathology in an in vivo model and is linked to early steps of Tau nucleation in Tau mutants cell lines. Such cell lines consist in suitable and evolving models to investigate additional factors involved in molecular pathways leading to whole Tau aggregation

    Granulovacuolar Degenerations Appear in Relation to Hippocampal Phosphorylated Tau Accumulation in Various Neurodegenerative Disorders

    Get PDF
    BACKGROUND: Granulovacuolar degeneration (GVD) is one of the pathological hallmarks of Alzheimer's disease (AD), and it is defined as electron-dense granules within double membrane-bound cytoplasmic vacuoles. Several lines of evidence have suggested that GVDs appear within hippocampal pyramidal neurons in AD when phosphorylated tau begins to aggregate into early-stage neurofibrillary tangles. The aim of this study is to investigate the association of GVDs with phosphorylated tau pathology to determine whether GVDs and phosphorylated tau coexist among different non-AD neurodegenerative disorders. METHODS: An autopsied series of 28 patients with a variety of neurodegenerative disorders and 9 control patients were evaluated. Standard histological stains along with immunohistochemistry using protein markers for GVD and confocal microscopy were utilized. RESULTS: The number of neurons with GVDs significantly increased with the level of phosphorylated tau accumulation in the hippocampal regions in non-AD neurodegenerative disorders. At the cellular level, diffuse staining for phosphorylated tau was detected in neurons with GVDs. CONCLUSIONS: Our data suggest that GVDs appear in relation to hippocampal phosphorylated tau accumulation in various neurodegenerative disorders, while the presence of phosphorylated tau in GVD-harbouring neurons in non-AD neurodegenerative disorders was indistinguishable from age-related accumulation of phosphorylated tau. Although GVDs in non-AD neurodegenerative disorders have not been studied thoroughly, our results suggest that they are not incidental findings, but rather they appear in relation to phosphorylated tau accumulation, further highlighting the role of GVD in the process of phosphorylated tau accumulation

    Neurodegenerative diseases of Guam: analysis of TAU

    No full text
    Mutations in the tau gene have been described in families affected by frontotemporal dementia with parkinsonism linked to chromosome 17. The authors performed a genetic and biochemical analysis of this gene and its product in the parkinsonism dementia complex of Guam, a disorder characterized by the extensive formation of neurofibrillary tangles. The tau gene is not a primary cause of the parkinsonism dementia complex of Guam

    Caffeine intake exerts dual genome-wide effects on hippocampal metabolism and learning-dependent transcription

    Get PDF
    Caffeine is the most consumed psychoactive substance worldwide. Strikingly, molecular pathways engaged by its regular consumption remain unclear. We herein addressed the mechanisms associated with habitual (chronic) caffeine consumption in the mouse hippocampus using untargeted orthogonal-omics techniques. Our results revealed that chronic caffeine exerts concerted pleiotropic effects in the hippocampus, at the epigenomic, proteomic and metabolomic levels. Caffeine lowers metabolic-related processes in the bulk tissue, while it induces neuronal-specific epigenetic changes at synaptic transmission/plasticity-related genes and increased experience-driven transcriptional activity. Altogether, these findings suggest that regular caffeine intake improves the signal-to-noise ratio during information encoding, in part through a fine-tuning of metabolic genes while boosting the salience of information processing during learning in neuronal circuits.This work was supported by grants from Hauts-de-France (PARTEN-AIRR, COGNADORA; START-AIRR, INS-SPECT) and Programs d’Investissements d’Avenir LabEx (excellence laboratory) DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer’s disease) and EGID (European Genomic Institute for Diabetes ANR-10LABX-46). Our laboratories are also supported by ANR (GRAND to LB, ADORATAU, ADORASTrAU, METABOTAU to DB and BETAPLASTICITY to JSA), COEN (5008), Fondation pour la Recherche MĂ©dicale, France Alzheimer/Fondation de France, FHU VasCog research network (Lille, France), Fondation Vaincre Alzheimer (ADOMEMOTAU), European Foundation for the Study of Diabetes (EFSD to JSA), Fondation Plan Alzheimer as well as Inserm, CNRS, UniversitĂ© Lille, Lille MĂ©tropole CommunautĂ© Urbaine, DN2M. KC hold a doctoral grant from Lille University. VG-M was supported by Fondation pour la Recherche MĂ©dicale (SPF20160936000). CM was supported by RĂ©gion Hauts753 30 754 de-France. ALB is supported by CNRS, Unistra (Strasbourg, France), ANR-16-CE92-0031 755 756 757 758 759 760 761 762 (EPIFUS), ANR-18-CE16-0008-02 (ADORASTrAU), Alsace Alzheimer 67, France Alzheimer (AAP SM 2017 #1664). IP is supported by Fondation pour la Recherche MĂ©dicale (SPF201909009162). CEM is grateful for the support by the Alzheimer Forschung Initiative e.V. (AFI, DĂŒsseldorf, Germany). LC was funded by SIF Italian Society of Pharmacology. RAC was supported by LaCaixa Foundation (LCF/PR/HP17/52190001) and FCT (POCI-01-0145-FEDER-03127). Santa Casa da MisericĂłrdia (MB-7-2018) and CEECIND/01497/2017 to LVL

    Islet-brain1/C-Jun N-terminal kinase interacting protein-1 (IB1/JIP-1) promoter variant is associated with Alzheimer's disease.

    No full text
    Islet-brain1 (IB1) or c-Jun NH2 terminal kinase interacting protein-1 (JIP-1), the product of the MAPK8IP1 gene, functions as a neuronal scaffold protein to allow signalling specificity. IB1/JIP-1 interacts with many cellular components including the reelin receptor ApoER2, the low-density lipoprotein receptor-related protein (LRP), kinesin and the Alzheimer's amyloid precursor protein. Coexpression of IB1/JIP-1 with other components of the c-Jun NH2 terminal-kinase (JNK) pathway activates the JNK activity; conversely, selective disruption of IB1/JIP-1 in mice reduces the stress-induced apoptosis of neuronal cells. We therefore hypothesized that IB1/JIP-1 is a risk factor for Alzheimer's disease (AD). By immunocytochemistry, we first colocalized the presence of IB1/JIP-1 with JNK and phosphorylated tau in neurofibrillary tangles. We next identified a -499A>G polymorphism in the 5' regulatory region of the MAPK8IP1 gene. In two separate French populations the -499A>G polymorphism of MAPK8IP1 was not associated with an increased risk to AD. However, when stratified on the +766C>T polymorphism of exon 3 of the LRP gene, the IB1/JIP-1 polymorphism was strongly associated with AD in subjects bearing the CC genotype in the LRP gene. The functional consequences of the -499A>G polymorphism of MAPK8IP1 was investigated in vitro. In neuronal cells, the G allele increased transcriptional activity and was associated with an enhanced binding activity. Taken together, these data indicate that the increased transcriptional activity in the presence of the G allele of MAPK8IP1 is a risk factor to the onset of in patients bearing the CC genotype of the LRP gene

    Quantitative proteomics analysis of zebrafish exposed to sub-lethal dosages of ÎČ-methyl-amino-L-alanine (BMAA)

    Get PDF
    The non-protein amino acid ÎČ-methylamino-L-alanine (BMAA) is a neurotoxin present in microalgae and shown to accumulate in the food web. BMAA has been linked to the complex neurodegenerative disorder of Guam and to increased incidents sporadic ALS. Two main neurotoxic routes are suggested; an excitotoxic by acting as an agonist towards glutamate receptors and a metabolic by misincorporating into cellular proteins. We have used zebrafish, an increasingly used model for neurodegenerative diseases, to further identify signaling components involved in BMAA-induced toxicity. Zebrafish embryos were exposed to sub-lethal dosages of BMAA and a label-free proteomics analysis was conducted on larvae 4 days post fertilization. The exposed larvae showed no developmental abnormalities, but a reduced heart rate and increased expression of GSK3 isoforms. Search towards a reviewed database containing 2968 entries identified 480 proteins. Only 17 of these were regulated 2-fold or more in the exposed larvae. Seven of these proteins could be associated to glutamate receptor signaling and recycling. The remaining nine have all been linked to disturbance in protein homeostasis, reactive oxygen species (ROS) development or neuronal cell death. We also found that BMAA influenced the endocannabinoid system by up-regulation of fatty acid amide hydrolase (FAAH) and that FAAH inhibitor URB597 reduced the BMAA effect on heart rate and GSK3 expression
    corecore