53 research outputs found

    Resolving the fine-scale velocity structure of continental hyperextension at the Deep Galicia Margin using full-waveform inversion

    Get PDF
    Continental hyperextension during magma-poor rifting at the Deep Galicia Margin is characterised by a complex pattern of faulting, thin continental fault blocks, and the serpentinisation, with local exhumation, of mantle peridotites along the S-reflector, interpreted as a detachment surface. In order to understand fully the evolution of these features, it is important to image seismically the structure and to model the velocity structure to the greatest resolution possible. Travel-time tomography models have revealed the long-wavelength velocity structure of this hyperextended domain, but are often insufficient to match accurately the short-wavelength structure observed in reflection seismic imaging. Here we demonstrate the application of two-dimensional (2D) time-domain acoustic full-waveform inversion to deep water seismic data collected at the Deep Galicia Margin, in order to attain a high resolution velocity model of continental hyperextension. We have used several quality assurance procedures to assess the velocity model, including comparison of the observed and modelled waveforms, checkerboard tests, testing of parameter and inversion strategy, and comparison with the migrated reflection image. Our final model exhibits an increase in the resolution of subsurface velocities, with particular improvement observed in the westernmost continental fault blocks, with a clear rotation of the velocity field to match steeply dipping reflectors. Across the S-reflector there is a sharpening in the velocity contrast, with lower velocities beneath S indicative of preferential mantle serpentinisation. This study supports the hypothesis that normal faulting acts to hydrate the upper mantle peridotite, observed as a systematic decrease in seismic velocities, consistent with increased serpentinisation. Our results confirm the feasibility of applying the full-waveform inversion method to sparse, deep water crustal datasets

    Recognizing detachment-mode seafloor spreading in the deep geological past.

    Get PDF
    Large-offset oceanic detachment faults are a characteristic of slow- and ultraslow-spreading ridges, leading to the formation of oceanic core complexes (OCCs) that expose upper mantle and lower crustal rocks on the seafloor. The lithospheric extension accommodated by these structures is now recognized as a fundamentally distinct “detachment-mode” of seafloor spreading compared to classical magmatic accretion. Here we demonstrate a paleomagnetic methodology that allows unequivocal recognition of detachment-mode seafloor spreading in ancient ophiolites and apply this to a potential Jurassic detachment fault system in the Mirdita ophiolite (Albania). We show that footwall and hanging wall blocks either side of an inferred detachment have significantly different magnetizations that can only be explained by relative rotation during seafloor spreading. The style of rotation is shown to be identical to rolling hinge footwall rotation documented recently in OCCs in the Atlantic, confirming that detachment-mode spreading operated at least as far back as the Jurassic

    Resolving the fine-scale velocity structure of continental hyperextension at the Deep Galicia Margin using full-waveform inversion

    Get PDF
    Continental hyperextension during magma-poor rifting at the Deep Galicia Margin is characterized by a complex pattern of faulting, thin continental fault blocks and the serpentinization, with local exhumation, of mantle peridotites along the S-reflector, interpreted as a detachment surface. In order to understand fully the evolution of these features, it is important to image seismically the structure and to model the velocity structure to the greatest resolution possible. Traveltime tomography models have revealed the long-wavelength velocity structure of this hyperextended domain, but are often insufficient to match accurately the short-wavelength structure observed in reflection seismic imaging. Here, we demonstrate the application of 2-D time-domain acoustic full-waveform inversion (FWI) to deep-water seismic data collected at the Deep Galicia Margin, in order to attain a high-resolution velocity model of continental hyperextension. We have used several quality assurance procedures to assess the velocity model, including comparison of the observed and modeled waveforms, checkerboard tests, testing of parameter and inversion strategy and comparison with the migrated reflection image. Our final model exhibits an increase in the resolution of subsurface velocities, with particular improvement observed in the westernmost continental fault blocks, with a clear rotation of the velocity field to match steeply dipping reflectors. Across the S-reflector, there is a sharpening in the velocity contrast, with lower velocities beneath S indicative of preferential mantle serpentinization. This study supports the hypothesis that normal faulting acts to hydrate the upper-mantle peridotite, observed as a systematic decrease in seismic velocities, consistent with increased serpentinization. Our results confirm the feasibility of applying the FWI method to sparse, deep-water crustal data sets

    Asymmetric generation of oceanic crust at the ultra-slow spreading Southwest Indian Ridge, 64ÂşE

    Get PDF
    We describe topographic, gravity, magnetic, and sonar data from a Southwest Indian Ridge spreading segment near 64E, 28S. We interpret these to reveal crustal structure, spreading history, and volcanic and tectonic processes over the last 12 Myr. We confirm that the crust is some 2 km thicker north of the ridge axis, though it varies along and across axis on scales of 10 km and 4 Myr. The plate separation rate remained approximately constant at 13 ± 1 km Myr1, but half-spreading rates were up to 40% asymmetric, varying between faster-to-the-north and faster-to-the-south on a 4 Myr timescale. Topography shows a dominant E–W lineation normal to the N–S spreading direction. This is superficially similar to faulted abyssal hill terrain of the Mid-Atlantic Ridge (MAR), but inferred fault scarps are 3–4 times more widely spaced and have greater offsets. Conjugate pairs of massifs on either plate are interpreted as volcanic constructions similar to the large volcano currently filling the median valley at the segment center. They have temporal spacings of 4 Myr and are thought to reflect episodic melt focusing along an otherwise melt-poor ridge. Additionally, there are places, mainly on the southern plate, where lineated topography is replaced by a much blockier topography and embryonic ocean core complexes similar to those recently reported on the MAR near 13N. There is generally more extrusive volcanism on the northern plate and more tectonism on the southern one. Extrusive volcanism has propagated westward from the segment center since 2 Ma. The FUJI Dome core complex and adjacent seafloor to its east and west appear to be part of a single coherent block, capped by extrusive rock near the segment center, exposing gabbro via a detachment fault over the Dome and probably exposing deeper crust or upper mantle farther west near the segment end. Magnetic anomalies are continuous along this block. We suggest that at its eastern boundary the detachment is simply welded onto magmatically emplaced crust to the east in a similar way to young crust being welded to the old plate at ridge-transform intersections

    The methodological quality of systematic reviews comparing temporomandibular joint disorder surgical and non-surgical treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Temporomandibular joint disorders (TMJD) are multifactor, complex clinical problems affecting approximately 60–70% of the general population, with considerable controversy about the most effective treatment. For example, reports claim success rates of 70% and 83% for non-surgical and surgical treatment, whereas other reports claim success rates of 40% to 70% for self-improvement without treatment. Therefore, the purpose of this study was to (1) identify systematic reviews comparing temporomandibular joint disorder surgical and non-surgical treatment, (2) evaluate their methodological quality, and (3) evaluate the evidence grade within the systematic reviews.</p> <p>Methods</p> <p>A search strategy was developed and implemented for MEDLINE, Cochrane Library, LILACS, and Brazilian Dentistry Bibliography databases. Inclusion criteria were: systematic reviews (± meta-analysis) comparing surgical and non-surgical TMJD treatment, published in English, Spanish, Portuguese, Italian, or German between the years 1966 and 2007(up to July). Exclusion criteria were: <it>in vitro </it>or animal studies; narrative reviews or editorials or editorial letters; and articles published in other languages. Two investigators independently selected and evaluated systematic reviews. Three different instruments (AMSTAR, OQAQ and CASP) were used to evaluate methodological quality, and the results averaged. The GRADE instrument was used to evaluate the evidence grade within the reviews.</p> <p>Results</p> <p>The search strategy identified 211 reports; of which 2 were systematic reviews meeting inclusion criteria. The first review met 23.5 ± 6.0% and the second met 77.5 ± 12.8% of the methodological quality criteria (mean ± sd). In these systematic reviews between 9 and 15% of the trials were graded as high quality, and 2 and 8% of the total number of patients were involved in these studies.</p> <p>Conclusion</p> <p>The results indicate that in spite of the widespread impact of TMJD, and the multitude of potential interventions, clinicians have expended sparse attention to systematically implementing clinical trial methodology that would improve validity and reliability of outcome measures. With some 20 years of knowledge of evidence-based healthcare, the meager attention to these issues begins to raise ethical issues about TMJD trial conduct and clinical care.</p
    • …
    corecore