135 research outputs found

    Adenoviral gene transfer of angiostatic ATF-BPTI inhibits tumour growth

    Get PDF
    BACKGROUND: The outgrowth of new vessels – angiogenesis – in the tumour mass is considered to be a limiting factor of tumour growth. To inhibit the matrix lysis that is part of the tumour angiogenesis, we employed the chimeric protein mhATF-BPTI, composed of the receptor binding part of the urokinase (ATF) linked to an inhibitor of plasmin (BPTI). METHODS: For delivery, recombinant adenovirus encoding the transgene of interest was injected intravenously or locally into the tumour. The anti tumour effect of this compound was compared to that of human endostatin and of mhATF alone in two different rat bronchial carcinomas growing either as subcutaneous implants or as metastases. RESULTS: Significant inhibition of the tumour growth and decrease of the number of lung metastasis was achieved when the concentration of mhATF-BPTI at the tumour site was above 400 of ng / g tissue. This concentration could be achieved via production by the liver, only if permissive to the recombinant adenovirus. When the tumour cells could be transduced, local delivery of the vector was enough to obtain a response. In the case of metastasis, the capacity of the lung tissue to concentrate the encoded protein was essential to reach the required therapeutic levels. Further, endostatin or mhATF could not reproduce the effects of mhATF-BPTI, at similar concentrations (mhATF) and even at 10-fold higher concentration (endostatin). CONCLUSION: The ATF-BPTI was shown to inhibit tumour growth of different rat lung tumours when critical concentration was reached. In these tumour models, endostatin or ATF induce almost no tumour response

    Molecular analysis of metastasis in a polyomavirus middle T mouse model: the role of osteopontin

    Get PDF
    INTRODUCTION: In order to study metastatic disease, we employed the use of two related polyomavirus middle T transgenic mouse tumor transplant models of mammary carcinoma (termed Met and Db) that display significant differences in metastatic potential. METHODS: Through suppression subtractive hybridization coupled to the microarray, we found osteopontin (OPN) to be a highly expressed gene in the tumors of the metastatic mouse model, and a lowly expressed gene in the tumors of the lowly metastatic mouse model. We further analyzed the role of OPN in this model by examining sense and antisense constructs using in vitro and in vivo methods. RESULTS: With in vivo metastasis assays, the antisense Met cells showed no metastatic tumor formation to the lungs of recipient mice, while wild-type Met cells, with higher levels of OPN, showed significant amounts of metastasis. The Db cells showed a significantly reduced metastasis rate in the in vivo metastasis assay as compared with the Met cells. Db cells with enforced overexpression of OPN showed elevated levels of OPN but did not demonstrate an increase in the rate of metastasis compared with the wild-type Db cells. CONCLUSIONS: We conclude that OPN is an essential regulator of the metastatic phenotype seen in polyomavirus middle T-induced mammary tumors. Yet OPN expression alone is not sufficient to cause metastasis. These data suggest a link between metastasis and phosphatidylinositol-3-kinase-mediated transcriptional upregulation of OPN, but additional phosphatidylinositol-3-kinase-regulated genes may be essential in precipitating the metastasis phenotype in the polyomavirus middle T model

    Consensus guidelines for the use and interpretation of angiogenesis assays

    Get PDF
    The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference

    Macrophage biology in development, homeostasis and disease

    Get PDF
    Macrophages the most plastic cells of the hematopoietic system are found in all tissues and exhibit great functional diversity. They have roles in development, homeostasis, tissue repair, and immunity. While anatomically distinct, resident tissue macrophages exhibit different transcriptional profiles, and functional capabilities, they are all required for the maintenance of homeostasis. However, these reparative and homeostatic functions can be subverted by chronic insults, resulting in a causal association of macrophages with disease states. In this review, we discuss how macrophages regulate normal physiology and development and provide several examples of their pathophysiologic roles in disease. We define the “hallmarks” of macrophages performing particular functions, taking into account novel insights into the diversity of their lineages, identity, and regulation. This diversity is essential to understand because macrophages have emerged as important therapeutic targets in many important human diseases

    Current-mode high-accuracy high-precision CMOS amplifiers

    No full text

    Spectral elements numerical simulation of the 2009 L’Aquila earthquake on a detailed reconstructed domain

    Get PDF
    In this paper we simulate the earthquake that hit the city of L’Aquila on the 6th of April 2009 using SPEED (SPectral Elements in Elastodynamics with Discontinuous Galerkin), an open-source code able to simulate the propagation of seismic waves in complex three-dimensional (3D) domains. Our model includes an accurate 3D reconstruction of the Quaternary deposits, according to the most up-to-date data obtained from the Microzonation studies in Central Italy and a detailed model of the topography incorporated using a newly developed tool (May et al. 2021). The sensitivity of our results with respect to different kinematic seismic sources is investigated. The results obtained are in good agreement with the recordings at the available seismic stations at epicentral distances within a range of 20km. Finally, a blind source prediction scenario application shows a reasonably good agreement between simulations and recordings can be obtained by simulating stochastic rupture realizations with basic input data. These results, although limited to nine simulated scenarios, demonstrate that it is possible to obtain a satisfactory reconstruction of a ground shaking scenario employing a stochastic source constrained on a limited amount of ex-ante information. A similar approach can be used to model future and past earthquakes for which little or no information is typically available, with potential relevant implications for seismic risk assessment
    corecore