16 research outputs found

    Topoisomerase II beta interacts with cohesin and CTCF at topological domain borders

    Get PDF
    BACKGROUND: Type II DNA topoisomerases (TOP2) regulate DNA topology by generating transient double stranded breaks during replication and transcription. Topoisomerase II beta (TOP2B) facilitates rapid gene expression and functions at the later stages of development and differentiation. To gain new insight into the genome biology of TOP2B, we used proteomics (BioID), chromatin immunoprecipitation, and high-throughput chromosome conformation capture (Hi-C) to identify novel proximal TOP2B protein interactions and characterize the genomic landscape of TOP2B binding at base pair resolution. RESULTS: Our human TOP2B proximal protein interaction network included members of the cohesin complex and nucleolar proteins associated with rDNA biology. TOP2B associates with DNase I hypersensitivity sites, allele-specific transcription factor (TF) binding, and evolutionarily conserved TF binding sites on the mouse genome. Approximately half of all CTCF/cohesion-bound regions coincided with TOP2B binding. Base pair resolution ChIP-exo mapping of TOP2B, CTCF, and cohesin sites revealed a striking structural ordering of these proteins along the genome relative to the CTCF motif. These ordered TOP2B-CTCF-cohesin sites flank the boundaries of topologically associating domains (TADs) with TOP2B positioned externally and cohesin internally to the domain loop. CONCLUSIONS: TOP2B is positioned to solve topological problems at diverse cis-regulatory elements and its occupancy is a highly ordered and prevalent feature of CTCF/cohesin binding sites that flank TADs

    Nonequilibrium Chromosome Looping via Molecular Slip Links

    Get PDF
    We propose a model for the formation of chromatin loops based on the diffusive sliding of a DNA-bound factor which can dimerise to form a molecular slip-link. Our slip-links mimic the behaviour of cohesin-like molecules, which, along with the CTCF protein, stabilize loops which organize the genome. By combining 3D Brownian dynamics simulations and 1D exactly solvable non-equilibrium models, we show that diffusive sliding is sufficient to account for the strong bias in favour of convergent CTCF-mediated chromosome loops observed experimentally. Importantly, our model does not require any underlying, and energetically costly, motor activity of cohesin. We also find that the diffusive motion of multiple slip-links along chromatin may be rectified by an intriguing ratchet effect that arises if slip-links bind to the chromatin at a preferred "loading site". This emergent collective behaviour is driven by a 1D osmotic pressure which is set up near the loading point, and favours the extrusion of loops which are much larger than the ones formed by single slip-links.Comment: 37 pages, 12 figures, Supplementary Movies can be downloaded at http://www2.ph.ed.ac.uk/~dmarendu/Cohesin/SMX.mp4; with X=1, 2 or

    Chromatin loop anchors are associated with genome instability in cancer and recombination hotspots in the germline

    Get PDF
    Abstract Background Chromatin loops form a basic unit of interphase nuclear organization, with chromatin loop anchor points providing contacts between regulatory regions and promoters. However, the mutational landscape at these anchor points remains under-studied. Here, we describe the unusual patterns of somatic mutations and germline variation associated with loop anchor points and explore the underlying features influencing these patterns. Results Analyses of whole genome sequencing datasets reveal that anchor points are strongly depleted for single nucleotide variants (SNVs) in tumours. Despite low SNV rates in their genomic neighbourhood, anchor points emerge as sites of evolutionary innovation, showing enrichment for structural variant (SV) breakpoints and a peak of SNVs at focal CTCF sites within the anchor points. Both CTCF-bound and non-CTCF anchor points harbour an excess of SV breakpoints in multiple tumour types and are prone to double-strand breaks in cell lines. Common fragile sites, which are hotspots for genome instability, also show elevated numbers of intersecting loop anchor points. Recurrently disrupted anchor points are enriched for genes with functions in cell cycle transitions and regions associated with predisposition to cancer. We also discover a novel class of CTCF-bound anchor points which overlap meiotic recombination hotspots and are enriched for the core PRDM9 binding motif, suggesting that the anchor points have been foci for diversity generated during recent human evolution. Conclusions We suggest that the unusual chromatin environment at loop anchor points underlies the elevated rates of variation observed, marking them as sites of regulatory importance but also genomic fragility

    Ribosomal protein S11 influences glioma response to TOP2 poisons

    No full text
    Topoisomerase II poisons are one of the most common class of chemotherapeutics used in cancer. We and others had shown that a subset of glioblastomas, the most malignant of all primary brain tumors in adults, is responsive to TOP2 poisons. To identify genes that confer susceptibility to this drug in gliomas, we performed a genome-scale CRISPR knockout screen with etoposide. Genes involved in protein synthesis and DNA damage were implicated in etoposide susceptibility. To define potential biomarkers for TOP2 poisons, CRISPR hits were overlapped with genes whose expression correlates with susceptibility to this drug across glioma cell lines, revealing ribosomal protein subunit RPS11, 16, and 18 as putative biomarkers for response to TOP2 poisons. Loss of RPS11 led to resistance to etoposide and doxorubicin and impaired the induction of proapoptotic gene APAF1 following treatment. The expression of these ribosomal subunits was also associated with susceptibility to TOP2 poisons across cell lines from gliomas and multiple other cancers

    3D Genomics

    No full text

    Integrative pathway enrichment analysis of multivariate omics data

    No full text
    Multi-omics datasets represent distinct aspects of the central dogma of molecular biology. Such high-dimensional molecular profiles pose challenges to data interpretation and hypothesis generation. ActivePathways is an integrative method that discovers significantly enriched pathways across multiple datasets using statistical data fusion, rationalizes contributing evidence and highlights associated genes. As part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancers across 38 tumor types, we integrated genes with coding and non-coding mutations and revealed frequently mutated pathways and additional cancer genes with infrequent mutations. We also analyzed prognostic molecular pathways by integrating genomic and transcriptomic features of 1780 breast cancers and highlighted associations with immune response and anti-apoptotic signaling. Integration of ChIP-seq and RNA-seq data for master regulators of the Hippo pathway across normal human tissues identified processes of tissue regeneration and stem cell regulation. ActivePathways is a versatile method that improves systems-level understanding of cellular organization in health and disease through integration of multiple molecular datasets and pathway annotations
    corecore