16 research outputs found
Various Structural Design Modifications : para-Substituted Diphenylphosphinopyridine Bridged Cu(I) Complexes in Organic Light-Emitting Diodes
The well-known system of dinuclear Cu(I) complexes bridged by 2-(diphenylphosphino)pyridine (PyrPhos) derivatives Cu2X2L3 and Cu2X2LP2 (L = bridging ligand, P = ancillary ligand) goes along with endless variation options for tunability. In this work, the influence of substituents and modifications on the phosphine moiety of the NP-bridging ligand was investigated. In previous studies, the location of the lowest unoccupied molecular orbital (LUMO) of the copper complexes of the PyrPhos family was found to be located on the NP-bridging ligand and enabled color tuning in the whole visible spectrum. A multitude of dinuclear Cu(I) complexes based on the triple methylated 2- (bis (4-methylphenyl)phosphino)-4-methylpyridine (Cu-1b-H, Cu-1b-MeO, and Cu-1b-F) up to complexes bearing 2-(bis(4-fluorophenyl)phosphino)pyridine (Cu-6a-H) with electron-withdrawing fluorine atoms over many other variations on the NP-bridging ligands were synthesized. Almost all copper complexes were confirmed via single crystal X-ray diffraction analysis. Besides theoretical TDDFT-studies of the electronic properties and photophysical measurements, the majority of the phosphinomodified Cu(I) complexes was tested in solution-processed organic light-emitting diodes (OLEDs) with different heterostructure variations. The best results of the OLED devices were obtained with copper emitter Cu-lb-H in a stack architecture of ITO/PEDOT-PSS (50 nm)/poly-TPD (15 nm)/20 wt % Cu(I) emitter:CBP:TcTA(7:3) (45 nm)/TPBi (30 nm)/LiF(1 nm)/Al (>100 nm) with a high brightness of 5900 Cd/m(2) and a good current efficiency of 3.79 Cd/A.Peer reviewe
Remarkable high efficiency of red emitters using Eu(III) ternary complexes
We have synthesized Eu(iii) ternary complexes possessing record photoluminescence yields up to 90%. This high luminescence performance resulted from the absence of quenching moieties in the Eu coordination environment and an efficient energy transfer between ligands, combined with a particular symmetry of the coordination environment
Reactive Chemical Vapor Deposition Method as New Approach for Obtaining Electroluminescent Thin Film Materials
The new reactive chemical vapor deposition (RCVD) method has been proposed for thin film deposition of luminescent nonvolatile lanthanide aromatic carboxylates. This method is based on metathesis reaction between the vapors of volatile lanthanide dipivaloylmethanate (Ln(dpm)3) and carboxylic acid (HCarb orH2CarbâČ) and was successfully used in case of HCarb. Advantages of the method were demonstrated on example of terbium benzoate (Tb(bz)3) and o-phenoxybenzoate thin films, and Tb(bz)3 thin films were successfully examined in the OLED with the following structure glass/ITO/PEDOT:PSS/TPD/Tb(bz)3/Ca/Al. Electroluminescence spectra of Tb(bz)3 showed only typical luminescent bands, originated from transitions of the terbium ion. Method peculiarities for deposition of compounds of dibasic acids H2CarbâČ are established on example of terbium and europium terephtalates and europium 2,6-naphtalenedicarboxylate
Identifying lifetime as one of the key parameters responsible for the low brightness of lanthanide-based OLEDs
OLEDs based on lanthanide complexes have decisive optical advantages but are hampered by low brightness. Despite the efforts to optimize several parameters such as quantum yield and charge carrier mobility, there seems to be another key parameter that hinders their performances. Experimental data are therefore collected for mixed-ligand europium complexes with bathophenanthroline and different classes of anionic ligands and screened to identify the key parameter responsible for this situation, which turns out to be the long lifetime of their excited states. A broad literature search supports this conclusion, showing that lanthanide complexes are inferior to other classes of OLED emitters often because of their long lifetimes; furthermore, among a series of lanthanide complexes, the best results are achieved for those with the shortest lifetimes, even though they suffer from low quantum yields.LCS
Lanthanide Complexes with 2-(Tosylamino)-benzylidene- N -(aryloyl)hydrazones: Universal Luminescent Materials
International audienceLanthanide complexes Ln(L1)(HL1) (Ln = Lu, Yb, Er, Gd, Eu, Sm) and Ln(L2)(HL2) (Ln = Lu, Yb, Gd, Eu) with 2-(tosylamino)-benzylidene-N-(aryloyl)hydrazones (H2L1, aryloyl = 2-hydroxybenzoyl; H2L2, aryloyl = isonicotinoyl) were obtained with the aim to explore them as new luminescent materials. They were found to form monomeric species independently on the aryloyl group, and their crystal structures were determined from single-crystal X-ray data (Yb(L2)(HL2)·0.5(C2H5OH)), as well as from powder X-ray data by Rietveld refinement (Eu(L1)(HL1)). Ytterbium complexes exhibited intense luminescence, which allowed using them in host-free organic light-emitting diodes, which demonstrated remarkable efficiency of near infrared electroluminescence (50 ΌW/W) at low voltage (5 V). The special mechanism of europium luminescence quenching allowed using europium complexes as luminescent thermometers, which demonstrated very high sensitivity up to 12%/K. The theory of luminescence thermometry based on a three-level system was proposed, which allowed predicting sensitivity with high accuracy (error within 20%)