32 research outputs found

    Method desription of the assessment of lakes and reservoirs with Phytoplankton and the Phyto-Seeindex in Germany. User handbook.

    Get PDF
    Die vorliegende Verfahrensbeschreibung enthält alle Änderungen, die mit dem LAWA-Expertenkreis für Seen bis Dezember 2016 abgestimmt wurden und folgende Überarbeitungsbereiche betreffen: 1) Es erfolgte eine erhebliche Verfahrenserweiterung für Seen im Mittelgebirge sowie für künstliche und stark veränderte Seen (AWB und HMWB), worunter unter anderem die Talsperren und die Baggerseen fallen. Nach einem ersten Verfahrensentwurf (Hoehn et al. 2009) wurden die Bewertungsgrenzen sowie die Seetypologie nach den Ergebnissen eines Praxistestes der Bundesländer stark überarbeitet (Riedmüller & Hoehn 2011). 2a) Es wurden die Grenzwerte für die Kenngröße "Biomasse" an die Grenzwerte für die Trophiestufen des neuen Trophie-Index nach LAWA (2014) angepasst. 2b) Wie im Trophie-Index nach LAWA wurden alle Saisonmittel im PSI auf ein direktes Mittel aus den Termindaten umgestellt und nicht mehr wie bisher über den Umweg von Monatsmitteln. Dies betrifft auch den PTSI-Jahreswert. 3) Für die Tieflandseen wurden alle Bewertungsroutinen umfassend überarbeitet, die auf Kenngrößen der Algenklassen basieren. Dies erfolgte nach Überprüfung mit einem seit 2006 stark erweiterten Datensatz. 5) Für den Sondertyp der sauren Tagebauseen wurde ein Biodiversitäts-Index (Leßmann & Nixdorf 2009) als neue Kenngröße im Phyto-See-Index aufgenommen. 6) In dem neu entwickelten PhytoLoss-Verfahren werden automatisiert Indices für die Grazing-Effektstärke aus den gleichzeitig zum Phytoplankton ermittelten Zooplankton-Daten errechnet, wodurch eine erweiterte Interpretation des Phyto-See-Index und des Nahrungsnetzes erfolgt und Hinweise auf Handlungsoptionen für die Maßnahmenplanung gegeben werden. 7) Zur Qualitätssicherung des Untersuchungsverfahrens "Phytoplankton zur Bestimmung des Phyto-See-Index" wurde ein QS-Handbuch erarbeitet (Mischke 2015) 8) Die vormals zusammengefassten Seetypen 1, 2 und 3 der Alpen und Voralpen wurden als unabhängige Gewässertypen mit jeweils eigener Referenztrophie unterschieden (LAWA O 7.16). Es wurde eine Dokumentation erstellt, die die Gleichwertigkeit des überarbeiteten Phyto-See-Index zu den Ergebnissen der Europäischen Interkalibrierung darstellt (LAWA Projekt O 2.15; Riedmüller et al. 2016).In accordance with the European Water Framework Directive (EU-WRRL, 2000, EU 2008), the sensitivity of phytoplankton to environmental pressures of eutrophication is used to assess the ecological status of German lakes. In Germany the Phyto-See-Index (PSI) has been used since 2008. The European Commission has published the agreed classification systems of the member states – including the Phyto-See-Index - as the result of the intercalibration process in the Official Journal of the European Union (Europäische Kommission 2008, 2013). Since then, the Phyto-See-Index has been further developed (for details, see Annex III) with a considerable expansion for lakes in the German central highlands as well as for artificial and heavily modified lakes (AWB und HMWB), groups which include reservoirs and flooded quarry/gravel pits. For the special case of strongly acidic mining lakes, a biodiversity index (Leßmann & Nixdorf 2009) was adopted as a new component of the Phyto-See-Index. The Phyto-See-Index compares the current ecological status to a predetermined reference status, which is harmonised for ecoregions Europe-wide (Poikāne et al. 2010, 2014; Järvinen et al. 2013). Further required components of the Phyto-See-Index are: I) German lake sampling standard (Nixdorf et al. 2008, 2010), II) Profile documents describing German lake types and in the cover letter instructions for assigning lake types (Riedmüller et al. 2013b), III) German taxa list for phytoplankton (HTL; Mischke & Kusber Mai 2009) and IV) Assessment tool PhytoSee for the calculation of the Phyto-See-Index (Chapter 4). Please note that an update for the German coding list will be available at end of the year 2017, including currently accepted names also for indicator taxa

    WISER deliverable D3.1-4: guidance document on sampling, analysis and counting standards for phytoplankton in lakes

    Get PDF
    Sampling, analysis and counting of phytoplankton has been undertaken in European lakes for more than 100 years (Apstein 1892, Lauterborn 1896, Lemmermann 1903, Woloszynska 1912, Nygaard 1949). Since this early period of pioneers, there has been progress in the methods used to sample, fix, store and analyse phytoplankton. The aim of the deliverable D3.1-4 is to select, harmonize and recommend the most optimal method as a basis for lake assessment. We do not report and review the huge number of European national methods or other published manuals for phytoplankton sampling and analysis that are available. An agreement on a proper sampling procedure is not trivial for lake phytoplankton. In the early 20th century, sampling was carried out using plankton nets. An unconcentrated sample without any pre-screening is required for quantitative phytoplankton analysis, for which various water samplers were developed. Sampling of distinct water depths or an integral sample of the euphotic zone affects the choice of the sampler and sampling procedure. The widely accepted method to quantify algal numbers together with species determination was developed by Utermöhl (1958), who proposed the counting technique using sediment chambers and inverse microscopy. This is the basis for the recently agreed CEN standard “Water quality - Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique)” (CEN 15204, 2006). This CEN standard does not cover the sampling procedure or the calculation of biovolumes for phytoplankton species, although Rott (1981), Hillebrand et al (1999) and Pohlmann & Friedrich (2001) have contributed advice on how to calculate taxa biovolumes effectively. Willén (1976) suggested a simplified counting method, when counting 60 individuals of each species. For the Scandinavian region an agreed phytoplankton sampling and counting manual was compiled, which has been in use for about 20 years (Olrik et al. 1998, Blomqvist & Herlitz 1998). It is very unfortunate that no European guidance on sampling of phytoplankton in lakes was agreed before the phytoplankton assessment methods for the EU-WFD were developed and intercalibrated by Member States. In 2008 an initiative by the European Commission (Mandate M424) for two draft CEN standards on sampling in freshwaters and on calculation of phytoplankton biovolume was unfortunately delayed by administrative difficulties. Recently a grant agreement was signed between the Commission and DIN (German Institute for Standardization) in January 2012 to develop these standards. We believe this WISER guidance document can usefully contribute to these up-coming standards

    The future depends on what we do today – projecting Europe’s surface water quality into three different future scenarios

    Get PDF
    There are infinite possible future scenarios reflecting the impacts of anthropogenic multiple stress on our planet. These impacts include changes in climate and land cover, to which aquatic ecosystems are especially vulnerable. To assess plausible developments of the future state of European surface waters, we considered two climate scenarios and three storylines describing land use, management and anthropogenic development (‘Consensus’, ‘Techno’ and ‘Fragmented’, which in terms of environmental protection represent best-, intermediate- and worst-case, respectively). Three lake and four river basins were selected, representing a spectrum of European conditions through a range of different human impacts and climatic, geographical and biological characteristics. Using process-based and empirical models, freshwater total nitrogen, total phosphorus and chlorophyll-a concentrations were projected for 2030 and 2060. Under current conditions, the water bodies mostly fail good ecological status. In future predictions for the Techno and Fragmented World, concentrations further increased, while concentrations generally declined for the Consensus World. Furthermore, impacts were more severe for rivers than for lakes. Main pressures identified were nutrient inputs from agriculture, land use change, inadequately managed water abstractions and climate change effects. While the basins in the Continental and Atlantic regions were primarily affected by land use changes, in the Mediterranean/Anatolian the main driver was climate change. The Boreal basins showed combined impacts of land use and climate change and clearly reflected the climate-induced future trend of agricultural activities shifting northward. The storylines showed positive effects on ecological status by classical mitigation measures in the Consensus World (e.g. riparian shading), technical improvements in the Techno World (e.g. increasing wastewater treatment efficiency) and agricultural extensification in the Fragmented World. Results emphasize the need for implementing targeted measures to reduce anthropogenic impacts and the importance of having differing levels of ambition for improving the future status of water bodies depending on the societal future to be expected

    Effects of multiple stressors on cyanobacteria abundance vary with lake type

    Get PDF
    Blooms of cyanobacteria are a current threat to global water security that is expected to increase in the future because of increasing nutrient enrichment, increasing temperature and extreme precipitation in combination with prolonged drought. However, the responses to multiple stressors, such as those above, are often complex and there is contradictory evidence as to how they may interact. Here we used broad scale data from 494 lakes in central and northern Europe, to assess how cyanobacteria respond to nutrients (phosphorus), temperature and water retention time in different types of lakes. Eight lake types were examined based on factorial combinations of major factors that determine phytoplankton composition and sensitivity to nutrients: alkalinity (low and medium‐high), colour (clear and humic) and mixing intensity (polymictic and stratified). In line with expectations, cyanobacteria increased with temperature and retention time in five of the eight lake types. Temperature effects were greatest in lake types situated at higher latitudes, suggesting that lakes currently not at risk could be affected by warming in the future. However, the sensitivity of cyanobacteria to temperature, retention time and phosphorus varied among lake types highlighting the complex responses of lakes to multiple stressors. For example, in polymictic, medium‐high alkalinity, humic lakes cyanobacteria biovolume was positively explained by retention time and a synergy between TP and temperature while in polymictic, medium‐high alkalinity, clear lakes only retention time was identified as an explanatory variable. These results show that, although climate change will need to be accounted for when managing the risk of cyanobacteria in lakes, a ‘one‐size fits‐all’ approach is not appropriate. When forecasting the response of cyanobacteria to future environmental change, including changes caused by climate and local management, it will be important to take this differential sensitivity of lakes into account

    Was wäre wenn: Phytoplankton-Bewertung nach EU-WRRL und Klimawandelszenarios von Genehmigungsverfahren

    Get PDF
    Im Zentrum dieser Arbeit stehen Bioindikatoren, die im begründeten Verdacht stehen, gleichzeitig auf die anthropogenen Belastungen „Eutrophierung“ und „Klimaerwärmung“ zu reagieren. Cyanobacteria werden als Bioindikatoren mit 42 Arten und mittels ihres gesamten Biomasseanteils am Phytoplankton unter weiteren Kenngrößen im neuen deutschen Seenbewertungssystem, dem Phyto-See-Index (PSI) zur Umsetzung der Wasserrahmenrichtlinie (WRRL) genutzt (Mischke et al. 2008). Die meisten Vertreter der Cyanobacteria profitieren in ihrem Wachstum sowohl von einer Erhöhung der Trophie, als auch von erhöhten Wassertemperaturen. Für die Region Brandenburg wird nach Szenario B des PIC Potsdam mit einem Anstieg der Lufttemperatur um +1,5°C bis 2050 gerechnet (Jacob &Gerstengarbe. 2005). Dies hat eine Verlängerung der Schichtungsperiode (Adrian et al. 1993, Kirillin et al. 2008) in dimiktischen Seen, eine Annäherung der Wassertemperatur an die Optima vieler Arten und eine erhöhte hypolimnische P-Rücklösung (Adrian et al. 1993) zur Folge, was insgesamt einen höheren Trophiestatus der Seen einhergehend mit höheren Phytoplanktonbiomassen erwartet lässt. Es wird postuliert, dass die globale Erwärmung zur Verschiebung der Referenzzönosen („composition metrics“ wie PTSI und Algenklassen-Metrik) und der Biomasseausprägung („biomass metrics“) führt und damit die Bewertungsmatrix angepasst werden müsste. Um den Effekt der prognostizierten Erhöhung von Cyanobacteria auf die Bewertung mittels Phyto-See-Index zu dokumentieren, wird in diesem Beitrag der Biomasseanteil dieser Gruppe in einem Szenario anhand realer Seendaten künstlich verdoppelt und der Bewertung „ohne potentiellen Klimaeinfluss“ gegenübergestellt. Ein weiteres Phänomen aufgrund der Klimaerwärmung wird anhand eines Populationsmodells, welches zur Berücksichtigung der Überwinterung mittels Dauerzellen (Akineten) für eine Art der Nostocales (Cyanobacteria) entwickelt wurde, vorausgesagt (Wiedner et al. 2007): Es besagt, dass nostocale Arten mit einem Lebenszyklus bei Klimaerwärmung aufgrund der früheren Keimung höhere sommerliche Biomassen aufbauen werden. Um den Effekt einer Erhöhung der Lufttemperatur im vorausgehenden Winter oder Frühjahr auf die Nostocales in Freilanddaten zu beobachten, werden Langzeitdaten von 35 Seen mit kalten und warmen Jahren (-zeiten) ausgewertet

    Einfluss von Stickstoff und Phosphor auf die Gewässergüte von Seen

    Get PDF
    In NITROLIMIT wurde die bisher größte Datenbank zu Gewässergüteparametern aus 373 natürlichen Seen der norddeutschen Tiefebene zusammengestellt. Die Auswertung dieser Daten zeigte: • Der größte Teil der Seen befindet sich in einem mäßigen bis schlechten ökologischen Zustand. • Sowohl Stickstoff als auch Phosphor sind eng mit der Phytoplanktonbiomasse korreliert. Als Prädiktor für N- bzw. P-Limitation wurde ein DIN:TP-Massenverhältnis von 1,6 ermittelt. • N-Limitation tritt fast genauso häufig auf wie P-Limitation, wobei seentypspezifische und saisonale Limitationsmuster auftreten: N-Limitation tritt häufiger in flachen durchmischten Seen und Flussseen auf, und P-Limitation häufiger in tiefen geschichteten Seen. Im Verlauf der Vegetationsperiode findet häufig ein Wechsel von P-zu N-Limitation statt und zudem nimmt die Häufigkeit von anderen Limitationszuständen (beispielsweise Licht und Temperatur) zu. • Die ermittelten TN- und TP-Zielwerte zum Erreichen der oberen Grenze der ökologischen Zustandsklasse „gut“ reichen für die verschiedenen Seentypen von 480-800 μg L-1 TN und 22-66 μg L-1 TP. • Die derzeitigen TN- und TP-Konzentrationen in den Seentypen überschreiten die oben genannten Zielwerte in den meisten Fällen deutlich. Dies trifft insbesondere auf die TN-Konzentrationen zu. Der große Anteil von Seen mit einem mäßigen bis schlechtem ökologischem Zustand zeigt, dass zur Umsetzung der WRRL weitere Anstrengungen unternommen werden müssen. Dabei bekräftigen unsere Ergebnisse, nach denen P-Limitation etwas häufiger als N-Limitation auftritt, die derzeitige Strategie, durch Maßnahmen zur Reduktion der Phosphoreinträge eine Verbesserung des ökologischen Zustandes herbeizuführen. Unserer Ansicht nach sollte diese Strategie fortgeführt werden, wobei auch strengere Reduktionsziele für Phosphoreinträge zu erwägen sind

    WISER Deliverable D3.1-3: Report on uncertainty in phytoplankton metrics

    Get PDF
    Lake phytoplankton metrics proposed by the EC WISER Project for ecological quality assessment of European lakes are shown to be robust metrics. Latest results from the WISER pan-European field campaign reveal that variability in metric scores is largely due to variability between lakes and is significantly related to differences in eutrophication pressure (total phosphorus concentrations). Differences in locations around a lake, or sampling and analytical variability, only account for a small proportion of the variability in metric scores. These results are especially true for four candidate phytoplankton metrics being considered for Intercalibration: chlorophyll, PTI, MFGI and cyanobacteria abundance, for which >85% of the variability in metric scores was attributed between lakes and total phosphorus concentration was the best single predictor of variation in these metrics. Although, much among-lake metric variation still remained unexplained by the available environmental data, we conclude that these four proposed metrics are sufficiently robust metrics for ecological status assessment and are suitable for adoption in the Intercalibration process

    Handbuch für die Seenbewertung mittels Plankton–Phyto-See-Index (Teil A) und PhytoLoss - Modul Zooplankton (Teil B)

    Get PDF
    Die vorliegende Verfahrensbeschreibung enthält alle Änderungen, die mit dem LAWA-Expertenkreis für Seen bis Februar 2015 abgestimmt wurden und folgende Überarbeitungsbereiche betreffen: 1) Es erfolgte eine erhebliche Verfahrenserweiterung für Seen im Mittelgebirge sowie für künstliche und stark veränderte Seen (AWB und HMWB), worunter unter anderem die Talsperren und die Baggerseen fallen. Nach einem ersten Verfahrensentwurf (Hoehn et al. 2009) wurden die Bewertungsgrenzen sowie die Seetypologie nach den Ergebnissen eines Praxistestes der Bundesländer stark überarbeitet (Riedmüller & Hoehn 2011). 2 a) Es wurden die Grenzwerte für die Kenngröße „Biomasse“ an die Grenzwerte für die Trophiestufen des neuen Trophie-Index nach LAWA (2013; Riedmüller et al. 2013b) angepasst. 2 b) Wie im Trophie-Index nach LAWA wurden alle Saisonmittel im PSI auf ein direktes Mittel aus den Termindaten umgestellt, und nicht mehr wie bisher über den Umweg von Monatsmitteln. Dies betrifft auch den PTSI-Jahreswert. 3) Für die Tieflandseen wurden alle Bewertungsroutinen umfassend überarbeitet, die auf Kenngrößen der Algenklassen basieren. Dies erfolgte nach Überprüfung mit einem seit 2006 stark erweiterten Datensatz. 4) Für den Sondertyp der stark sauren Tagebauseen wurde ein Biodiversitäts-Index (Leßmann & Nixdorf 2009) als neue Kenngröße im Phyto-See-Index aufgenommen. 5) In dem neu entwickelten PhytoLoss-Verfahren werden automatisiert Indices für die Grazing-Effektstärke aus den gleichzeitig zum Phytoplankton ermittelten Zooplankton-Daten errechnet, wodurch eine erweiterte Interpretation des Phyto-See-Index und des Nahrungsnetzes erfolgt, und Hinweise auf Handlungsoptionen für die Maßnahmenplanung gegeben werden. 6) Zur Qualitätssicherung des Untersuchungsverfahrens „Phytoplankton zur Bestimmung des Phyto-See-Index“ wurde ein Handbuch erarbeitet (Kapitel 8)

    Analysis of changes over 44 years in the phytoplankton of Lake Võrtsjärv (Estonia): The effect of nutrients, climate and the investigator on phytoplankton-based water quality indices

    No full text
    We analysed long-term changes in phytoplankton composition in relation to hydrological, meteorological and nutrient loading data in the large (270 km(2)) shallow (mean depth 2.8 m) Lake Vrtsjarv. Nutrient loads to the lake were heavy in the 1970s and 1980s and decreased considerably thereafter. The average nutrient concentrations for 1985-2004 (1.6 mg l(-1) of total nitrogen and 53 mu g l(-1) of total phosphorus) characterize the lake as a eutrophic water body. All four calculated taxonomic indices showed a unidirectional deterioration of the lake's ecological status, despite reduced concentrations of nutrients. We focused our analysis on the PTSI index, which revealed a stepwise change between the years 1977 and 1979 that coincided with a large increase in water level, but also with a change of investigator. After correcting input data for possible investigator-induced differences, the step change remained because it was caused by major changes in the whole phytoplankton community. The previous dominant Planktolyngbya limnetica was replaced by two species of seasonally altering Limnothrix. Among phytoplankton functional groups, there was a decrease in all groups comprising small-sized phytoplankton species, such as X1, E, F, J, N and an increase in S1 and H1, both represented by filamentous cyanobacteria. Our results suggest a non-linear response of phytoplankton to changing nutrient loadings, and that the change observed between 1977 and 1979 was a regime shift triggered by water level change. High shade tolerance of the new dominants, and their ability to create shade, obviously stabilized the new status making it resistant to restoration efforts

    Defining ecologically relevant water quality targets for lakes in Europe

    Get PDF
    1. The implementation of the Water Framework Directive requires EU member states to establish and harmonise ecological status class boundaries for biological quality elements. In this paper, we describe an approach for defining ecological class boundaries that delineates shifts in lake ecosystem functioning and, therefore, provide ecologically meaningful targets for water policy in Europe. 2. We collected an extensive dataset of 810 lake-years from nine Central European countries, and we used phytoplankton chlorophyll-a, a metric widely used to measure the impact of eutrophication in lakes. Our approach establishes chlorophyll-a target values in relation to three significant ecological effects of eutrophication: the decline of aquatic macrophytes, the dominance of potentially harmful cyanobacteria and the major functional switch from a clear-water to a turbid state. 3. Ranges of threshold chlorophyll-a concentrations are given for the two most common lake types in lowland Central Europe: for moderately deep lakes (mean depth 3-15 m), the greatest ecological shifts occur in the range 10-12 µg L-1 chlorophyll-a, and for shallow lakes (<3 m mean depth), in the range 21-23 µg L-1 chlorophyll-a. 4. Synthesis and applications. Our study provides class boundaries for determining the ecological status of lakes, which have robust ecological consequences for lake functioning and which, therefore, provide strong and objective targets for sustainable water management in Europe. The results have been endorsed by all participant member states and adopted in the European Commission legislation (EC 2008), marking the first attempt in international water policy to move from physico-chemical quality standards to harmonised ecologically based quality targets
    corecore