236 research outputs found
A variational framework for higher order perturbations
A covariant, global, variational framework for perturbations in field
theories is presented. Perturbations are obtained as vertical vector fields on
the configuration bundle and they drag, exactly, solution into solutions. The
flow of a perturbation drags solutions into solutions and the dragged perturbed
solutions can be expanded in a series with respect to the flow parameter, hence
it contains perturbations at any order. Mechanics is included as a special
case. As a simple application, we recover the well-known discussion about
stability of geodesics on a sphere .Comment: 14 page
Adolescent Sleep Behavioral Interventions and Opportunities to Improve Cognitive Functioning: A Call for Action
Sleep is related to cognitive functioning, learning, and brain development in the adolescent population. Recent research indicates a rise in the presence of chronic sleep disorders such as insomnia in adolescents, particularly following the COVID-19 pandemic. Therefore, research on the effectiveness of sleep interventions for adolescents is necessary to guide treatment in adolescents. The authors conducted a systematic review of literature examining research on outcomes of treatment interventions for insomnia on sleep quality and cognitive functioning in adolescents. Results indicate a dearth of research examining effectiveness of treatment in adolescents, particularly in relation to the impact of such treatment on cognitive functioning in adolescents. The following paper provides a brief overview of existing research on treatment of insomnia or related problems including initiating, maintaining and awaking for adolescent populations with a focus on improvement of cognitive functioning within this population. The authors discuss existing barriers to research, emphasize the need to expand sleep research to include cognitive functioning outcomes, and inform best practices for treatment in adolescents following COVID-19. Lastly, the authors propose a call to action encouraging more widespread recognition of the need for research in this area
New pixelized Micromegas detector with low discharge rate for the COMPASS experiment
New Micromegas (Micro-mesh gaseous detectors) are being developed in view of
the future physics projects planned by the COMPASS collaboration at CERN.
Several major upgrades compared to present detectors are being studied:
detectors standing five times higher luminosity with hadron beams, detection of
beam particles (flux up to a few hundred of kHz/mm^{2}, 10 times larger than
for the present Micromegas detectors) with pixelized read-out in the central
part, light and integrated electronics, and improved robustness. Two solutions
of reduction of discharge impact have been studied, with Micromegas detectors
using resistive layers and using an additional GEM foil. Performance of such
detectors has also been measured. A large size prototypes with nominal active
area and pixelized read-out has been produced and installed at COMPASS in 2010.
In 2011 prototypes featuring an additional GEM foil, as well as an resistive
prototype, are installed at COMPASS and preliminary results from those
detectors presented very good performance. We present here the project and
report on its status, in particular the performance of large size prototypes
with an additional GEM foil.Comment: 11 pages, 5 figures, proceedings to the Micro-Pattern Gaseous
Detectors conference (MPGD2011), 29-31 August 2011, Kobe, Japa
Habitat filtering determines spatial variation of macroinvertebrate community traits in northern headwater streams
Although our knowledge of the spatial distribution of stream organisms has been increasing rapidly in the last decades, there is still little consensus about trait-based variability of macroinvertebrate communities within and between catchments in near-pristine systems. Our aim was to examine the taxonomic and trait based stability vs. variability of stream macroinvertebrates in three high-latitude catchments in Finland. The collected taxa were assigned to unique trait combinations (UTCs) using biological traits. We found that only a single or a highly limited number of taxa formed a single UTC, suggesting a low degree of redundancy. Our analyses revealed significant differences in the environmental conditions of the streams among the three catchments. Linear models, rarefaction curves and beta-diversity measures showed that the catchments differed in both alpha and beta diversity. Taxon- and trait-based multivariate analyses also indicated that the three catchments were significantly different in terms of macroinvertebrate communities. All these findings suggest that habitat filtering, i.e., environmental differences among catchments, determines the variability of macroinvertebrate communities, thereby contributing to the significant biological differences among the catchments. The main implications of our study is that the sensitivity of trait-based analyses to natural environmental variation should be carefully incorporated in the assessment of environmental degradation, and that further studies are needed for a deeper understanding of trait-based community patterns across near-pristine streams
Brettanomyces bruxellensis yeasts: impact on wine and winemaking
Yeasts belonging to the Brettanomyces/Dekkera genus are non-conventional yeasts, which affect winemaking by causing wine spoilage all over the world. This mini-review focuses on recent results concerning the presence of Brettanomyces bruxellensis throughout the wine processing chain. Here, culture-dependent and independent methods to detect this yeast on grapes and at the very early stage of wine production are encompassed. Chemical, physical and biological tools, devised for the prevention and control of such a detrimental species during winemaking are also presented. Finally, the mini-review identifies future research areas relevant to the improvement of wine safety and sensory profiles
Traits and stress: keys to identify community effects of low levels of toxicants in test systems
Community effects of low toxicant concentrations are obscured by a multitude of confounding factors. To resolve this issue for community test systems, we propose a trait-based approach to detect toxic effects. An experiment with outdoor stream mesocosms was established 2-years before contamination to allow the development of biotic interactions within the community. Following pulse contamination with the insecticide thiacloprid, communities were monitored for additional 2Â years to observe long-term effects. Applying a priori ecotoxicological knowledge species were aggregated into trait-based groups that reflected stressor-specific vulnerability of populations to toxicant exposure. This reduces inter-replicate variation that is not related to toxicant effects and enables to better link exposure and effect. Species with low intrinsic sensitivity showed only transient effects at the highest thiacloprid concentration of 100Â ÎŒg/l. Sensitive multivoltine species showed transient effects at 3.3Â ÎŒg/l. Sensitive univoltine species were affected at 0.1Â ÎŒg/l and did not recover during the year after contamination. Based on these results the new indicator SPEARmesocosm was calculated as the relative abundance of sensitive univoltine taxa. Long-term community effects of thiacloprid were detected at concentrations 1,000 times below those detected by the PRC (Principal Response Curve) approach. We also found that those species, characterised by the most vulnerable trait combination, that were stressed were affected more strongly by thiacloprid than non-stressed species. We conclude that the grouping of species according to toxicant-related traits enables identification and prediction of community response to low levels of toxicants and that additionally the environmental context determines species sensitivity to toxicants
Functional traits of hyporheic and benthic invertebrates reveal importance of wood-driven geomorphological processes to rivers
1.Large wood (LW) is a natural element of river environments and an integral component of many river restoration schemes to promote biodiversity. It is an important habitat in itself, but it also induces a wide range of hydraulic, hydrological, geomorphological, and chemical conditions that influence the ecological community. However, the effects of hydroâgeomorphological processes induced by LW on local benthic and hyporheic invertebrates have not been well characterized.
2.A functional approach was applied to invertebrate data collected in a field survey at sites with LW and without LW (control), to investigate the response of hyporheic and benthic invertebratesâ trait profiles in response to local LWâinduced processes.
3.We hypothesized LW sites to be associated with different trait modalities than control sites in relation to woodâinduced processes and conditions (i.e. hyporheic exchange flow, oxygen availability, temporal stability, organic matter, denitrification, hydraulic conductivity). Multivariate analyses and Partial Least Squares (PLS) Path Modelling were used to detect the differences in trait profiles between LW and control sites and to study the variation of traits as a function of hydrological, sedimentological, physical and chemical variables.
4.Biological (i.e. aquatic stages, reproduction), physiological (i.e. dispersal, feeding habits) and behavioural (i.e. substrate preferences) trait utilization by the hyporheic meiofauna differed between LW and control sites. At LW sites, the hyporheic meiofaunal assemblage was significantly associated with aquatic active dispersal, aquatic eggs and hard substrate preferences. This trait category selection was linked to changes in physicalâsedimentological processes at LW sites when compared to control sites. Macrofaunal benthic and hyporheic functional traits did not differ significasignificantly between wood and control sites, suggesting similar functioning of these assemblages at the surfaceâsubsurface interface.
5.This study found that LW affects invertebrate traits by altering fluvial processes to produce, locally, a mosaic of habitats. Hyporheic meiofauna trait responses to LWâprocesses have suggested (i) the crucial role of LW in supporting river benthic zone functioning, and thus (ii) a possible benefit to river restoration by enhancing functional interactions among different ecological niches
Time projection chambers for the T2K near detectors
The T2K experiment is designed to study neutrino oscillation properties by directing a high intensity neutrino beam produced at J-PARC in Tokai, Japan, towards the large Super-Kamiokande detector located 295 km away, in Kamioka, Japan. The experiment includes a sophisticated near detector complex, 280 m downstream of the neutrino production target in order to measure the properties of the neutrino beam and to better understand neutrino interactions at the energy scale below a few GeV. A key element of the near detectors is the ND280 tracker, consisting of two active scintillator-bar target systems surrounded by three large time projection chambers (TPCs) for charged particle tracking. The data collected with the tracker is used to study charged current neutrino interaction rates and kinematics prior to oscillation, in order to reduce uncertainties in the oscillation measurements by the far detector. The tracker is surrounded by the former UA1/Nomad dipole magnet and the TPCs measure the charges, momenta, and particle types of charged particles passing through them. Novel features of the TPC design include its rectangular box layout constructed from composite panels, the use of bulk micromegas detectors for gas amplification, electronics readout based on a new ASIC, and a photoelectron calibration system. This paper describes the design and construction of the TPCs, the micromegas modules, the readout electronics, the gas handling system, and shows the performance of the TPCs as deduced from measurements with particle beams, cosmic rays, and the calibration system
- âŠ