109 research outputs found

    Upscaling of anisotropy in unsaturated Miller-similar porous media

    Get PDF
    Geological and pedological processes rarely form isotropic media as is usually assumed in transport studies. Anisotropy at the Darcy or field scale may be detected directly by measuring flow parameters or may become indirectly evident from movement and shape of solute plumes. Anisotropic behavior of a soil at one scale may, in many cases, be related to the presence of lower-scale directional structures. Miller similitude with different pore-scale geometries of the basic element is used to model macroscopic flow and transport behavior. Analytical expressions for the anisotropic conductivity tensor are derived based on the dynamic law that governs the flow problem at the pore scale. The effects of anisotropy on transport parameters are estimated by numerical modeling

    Quality of life changes over time and predictors in a large head and neck patients' cohort: secondary analysis from an Italian multi-center longitudinal, prospective, observational study-a study of the Italian Association of Radiotherapy and Clinical Oncology (AIRO) head and neck working group

    Get PDF
    Purpose: The present study examined the longitudinal trajectories, through hierarchical modeling, of quality of life among patients with head and neck cancer, specifically symptoms burden, during radiotherapy, and in the follow-up period (1, 3, 6, and 12 months after completion of radiotherapy), through the M.D. Anderson Symptom Inventory Head and Neck questionnaire, formed by three factors. Furthermore, analyses were conducted controlling for socio-demographic as well as clinical characteristics. Methods: Multi-level mixed-effects linear regression was used to estimate the association between quality of life and time, age, gender, household, educational level, employment status, ECOG performance status, human papilloma virus (HPV) status, surgery, chemotherapy, alcohol intake, and smoking. Results: Among the 166 participants, time resulted to be a predictor of all the three questionnaire factors, namely, general and specific related symptoms and interference with daily life. Moreover, regarding symptom interference with daily activities factor, HPV-positive status played a significant role. Considering only HPV-negative patients, only time predicted patients' quality of life. Differently, among HPV-positive patients, other variables, such as gender, educational level, alcohol use, surgery, age at diagnosis, employment status, and ECOG status, resulted significant. Conclusion: It was evident that quality of life of patients with head and neck cancer declined during RT, whereas it slowly improved after ending treatment. Our results clarified the role of some socio-demographic and clinical variables, for instance, HPV, which would allow to develop treatments tailored to each patient

    A review of nature-based solutions for urban water management in European circular cities: a critical assessment based on case studies and literature

    Get PDF
    Abstract Nature-based solutions (NBS) can protect, manage and restore natural or modified ecosystems. They are a multidisciplinary, integrated approach to address societal challenges and some natural hazards effectively and adaptively, simultaneously providing human well-being and biodiversity benefits. NBS applications can be easily noticed in circular cities, establishing an urban system that is regenerative and accessible. This paper aims to offer a review on NBS for urban water management from the literature and some relevant projects running within the COST Action 'Implementing nature-based solutions for creating a resourceful circular city'. The method used in the study is based on a detailed tracking of specific keywords in the literature using Google Scholar, ResearchGate, Academia.edu, ScienceDirect and Scopus. Based on this review, three main applications were identified: (i) flood and drought protection; (ii) the water-food-energy nexus; and (iii) water purification. The paper shows that NBS provide additional benefits, such as improving water quality, increasing biodiversity, obtaining social co-benefits, improving urban microclimate, and the reduction of energy consumption by improving indoor climate. The paper concludes that a systemic change to NBS should be given a higher priority and be preferred over conventional water infrastructure

    Management of Urban Waters with Nature-Based Solutions in Circular Cities—Exemplified through Seven Urban Circularity Challenges

    Get PDF
    Nature-Based Solutions (NBS) have been proven to effectively mitigate and solve resource depletion and climate-related challenges in urban areas. The COST (Cooperation in Science and Technology) Action CA17133 entitled “Implementing nature-based solutions (NBS) for building a resourceful circular city” has established seven urban circularity challenges (UCC) that can be addressed effectively with NBS. This paper presents the outcomes of five elucidation workshops with more than 20 European experts from different backgrounds. These international workshops were used to examine the effectiveness of NBS to address UCC and foster NBS implementation towards circular urban water management. A major outcome was the identification of the two most relevant challenges for water resources in urban areas: ‘Restoring and maintaining the water cycle’ (UCC1) and ‘Water and waste treatment, recovery, and reuse’ (UCC2). s Moreover, significant synergies with ‘Nutrient recovery and reuse’, ‘Material recovery and reuse’, ‘Food and biomass production’, ‘Energy efficiency and recovery’, and ‘Building system recovery’ were identified. Additionally, the paper presents real-life case studies to demonstrate how different NBS and supporting units can contribute to the UCC. Finally, a case-based semi-quantitative assessment of the presented NBS was performed. Most notably, this paper identifies the most typically employed NBS that enable processes for UCC1 and UCC2. While current consensus is well established by experts in individual NBS, we presently highlight the potential to address UCC by combining different NBS and synergize enabling processes. This study presents a new paradigm and aims to enhance awareness on the ability of NBS to solve multiple urban circularity issues.publishedVersio

    Head and neck radiotherapy amid the COVID‑19 pandemic: practice recommendations of the Italian Association of Radiotherapy and Clinical Oncology (AIRO)

    Get PDF
    Abstract Management of patients with head and neck cancers (HNCs) is challenging for the Radiation Oncologist, especially in the COVID-19 era. The Italian Society of Radiotherapy and Clinical Oncology (AIRO) identified the need of practice recommendations on logistic issues, treatment delivery and healthcare personnel’s protection in a time of limited resources. A panel of 15 national experts on HNCs completed a modified Delphi process. A five-point Likert scale was used; the chosen cut-offs for strong agreement and agreement were 75% and 66%, respectively. Items were organized into two sections: (1) general recommendations (10 items) and (2) special recommendations (45 items), detailing a set of procedures to be applied to all specific phases of the Radiation Oncology workflow. The distribution of facilities across the country was as follows: 47% Northern, 33% Central and 20% Southern regions. There was agreement or strong agreement across the majority (93%) of proposed items including treatment strategies, use of personal protection devices, set-up modifications and follow-up re-scheduling. Guaranteeing treatment delivery for HNC patients is well-recognized in Radiation Oncology. Our recommendations provide a flexible tool for management both in the pandemic and post-pandemic phase of the COVID-19 outbreak

    Current Wildland Fire Patterns and Challenges in Europe : A Synthesis of National Perspectives

    Get PDF
    Changes in climate, land use, and land management impact the occurrence and severity of wildland fires in many parts of the world. This is particularly evident in Europe, where ongoing changes in land use have strongly modified fire patterns over the last decades. Although satellite data by the European Forest Fire Information System provide large-scale wildland fire statistics across European countries, there is still a crucial need to collect and summarize in-depth local analysis and understanding of the wildland fire condition and associated challenges across Europe. This article aims to provide a general overview of the current wildland fire patterns and challenges as perceived by national representatives, supplemented by national fire statistics (2009-2018) across Europe. For each of the 31 countries included, we present a perspective authored by scientists or practitioners from each respective country, representing a wide range of disciplines and cultural backgrounds. The authors were selected from members of the COST Action "Fire and the Earth System: Science & Society" funded by the European Commission with the aim to share knowledge and improve communication about wildland fire. Where relevant, a brief overview of key studies, particular wildland fire challenges a country is facing, and an overview of notable recent fire events are also presented. Key perceived challenges included (1) the lack of consistent and detailed records for wildland fire events, within and across countries, (2) an increase in wildland fires that pose a risk to properties and human life due to high population densities and sprawl into forested regions, and (3) the view that, irrespective of changes in management, climate change is likely to increase the frequency and impact of wildland fires in the coming decades. Addressing challenge (1) will not only be valuable in advancing national and pan-European wildland fire management strategies, but also in evaluating perceptions (2) and (3) against more robust quantitative evidence.Peer reviewe

    Modelling biomass competition and invasion in a schematic wetland

    No full text
    Plants growing along hydrologic gradients adjust their biomass allocation and distribution in response to interspecific competition. Furthermore, susceptibility of a community to invasion is to some extent mediated by differences in growth habit, including root architecture and canopy hight. With reference to the study of a schematic wetland, the aim of this paper is (1) to test, via numerical modeling, the capacity of native plants to counteract an alien dominant species and cause eco-hydrological shifts of the ecosystem by changing their growth habit (e. g. allocating biomass below ground and by so doing changing the evapotranspiration locally) and (2) to test the impact on biodiversity of management practices that alter nutrient supply. The results demonstrated that unique combinations of vegetation types characterized by different growth habits may lead to different vegetation patterns under the same hydrologic forcing, and additionally, the vegetation patterns may change in response to major hydrological shifts, which could be related to diverse wetland management and restoration practices

    Modeling media with oriented structures

    No full text
    Heterogeneity is typically the result of space variability of soil parameters at different scales. Soil anisotropy may be defined as the spatial persistence in some direction only, across coarse-grid elements, of heterogeneous structures with different characteristic lengths in different directions. One can account for the effect of these structures by upscaling soil properties. Analyzing flow in a strongly anisotropic structured soil at different scales evidences how transverse dispersion reduces to a subscale process, leading to mixing within the conductive structures

    Modeling banded vegetation patterns in semiarid regions: Interdependence between biomass growth rate and relevant hydrological processes

    No full text
    Vegetation patterns, such as regular spots and bands, have been observed in arid and semiarid lands. One of the most common explanations for vegetation banding is that the homogeneous steady state solution of soil moisture and vegetation biomass density balance, expressed in the form of a bucket model, may be unstable under conditions of scarce mean annual rainfall. Even though the theory seems to support our intuitive explanation of the phenomenon, there are still unresolved questions concerning soil parameterization, relevant hydrological processes, and the way plant physiology should be modeled in arid and semiarid environments where vegetation patterns have been observed. This paper examines the interrelation between hydrological processes and plant physiology. The biomass growth rate resembles plant physiology within the bucket model and determines the survival plant strategy given a limited soil moisture availability. The fact that very different hypotheses concerning the biomass growth rate have been formulated has not yet been given the important consideration it deserves. Different models for vegetation banding will be considered here. They are formulated by introducing different growth rates within the same soil moisture and vegetation balance equations. Linear stability analysis and numerical integration of the different models showed some relevant interrelation between hydrological and physiological features. It was demonstrated that the relation between biomass growth rate and biomass density determines which hydrological process enables vegetation pattern initiation. The discussion of this result leads to a critical review of previously published hypotheses on plant physiology and hydrological processes inducing vegetation organization
    corecore