95 research outputs found

    Features of the opportunistic behaviour of the marine bacterium marinobacter algicola in the microalga ostreococcus tauri phycosphere

    Get PDF
    Although interactions between microalgae and bacteria are observed in both natural environment and the laboratory, the modalities of coexistence of bacteria inside microalgae phycospheres in laboratory cultures are mostly unknown. Here, we focused on well-controlled cultures of the model green picoalga Ostreococcus tauri and the most abundant member of its phycosphere, Marinobacter algicola. The prevalence of M. algicola in O. tauri cultures raises questions about how this bacterium maintains itself under laboratory conditions in the microalga culture. The results showed that M. algicola did not promote O. tauri growth in the absence of vitamin B12 while M. algicola depended on O. tauri to grow in synthetic medium, most likely to obtain organic carbon sources provided by the microalgae. M. algicola grew on a range of lipids, including triacylglycerols that are known to be produced by O. tauri in culture during abiotic stress. Genomic screening revealed the absence of genes of two particular modes of quorum-sensing in Marinobacter genomes which refutes the idea that these bacterial communication systems operate in this genus. To date, the ‘opportunistic’ behaviour of M. algicola in the laboratory is limited to several phytoplanktonic species including Chlorophyta such as O. tauri. This would indicate a preferential occurrence of M. algicola in association with these specific microalgae under optimum laboratory conditions

    Differential survival throughout the full annual cycle of a migratory bird presents a life-history trade-off.

    Get PDF
    Long-distance migrations are among the most physically demanding feats animals perform. Understanding the potential costs and benefits of such behaviour is a fundamental question in ecology and evolution. A hypothetical cost of migration should be outweighed by higher productivity and/or higher annual survival, but few studies on migratory species have been able to directly quantify patterns of survival throughout the full annual cycle and across the majority of a species' range. Here, we use telemetry data from 220 migratory Egyptian vultures Neophron percnopterus, tracked for 3,186 bird months and across approximately 70% of the species' global distribution, to test for differences in survival throughout the annual cycle. We estimated monthly survival probability relative to migration and latitude using a multi-event capture-recapture model in a Bayesian framework that accounted for age, origin, subpopulation and the uncertainty of classifying fates from tracking data. We found lower survival during migration compared to stationary periods (β = −0.816; 95% credible interval: −1.290 to −0.318) and higher survival on non-breeding grounds at southern latitudes (<25°N; β = 0.664; 0.076-1.319) compared to on breeding grounds. Survival was also higher for individuals originating from Western Europe (β = 0.664; 0.110-1.330) as compared to further east in Europe and Asia, and improved with age (β = 0.030; 0.020-0.042). Anthropogenic mortalities accounted for half of the mortalities with a known cause and occurred mainly in northern latitudes. Many juveniles drowned in the Mediterranean Sea on their first autumn migration while there were few confirmed mortalities in the Sahara Desert, indicating that migration barriers are likely species-specific. Our study advances the understanding of important fitness trade-offs associated with long-distance migration. We conclude that there is lower survival associated with migration, but that this may be offset by higher non-breeding survival at lower latitudes. We found more human-caused mortality farther north, and suggest that increasing anthropogenic mortality could disrupt the delicate migration trade-off balance. Research to investigate further potential benefits of migration (e.g. differential productivity across latitudes) could clarify how migration evolved and how migrants may persist in a rapidly changing world

    Revista de Vertebrados de la Estación Biológica de Doñana

    Get PDF
    Clave preliminar de las escamas de los peces de agua dulce de España, a nivel de familiaExito reproductor del Buitre leonado (Gyps fulvus) en NavarraAlimentación del Gavilán (Accipiter nisus) en la Isla de TenerifeEl Verdecillo (Serinus serinus): Tendencias en la estación de nidificación, en el tamaño del huevo y en la supervivencia.las batidas como método de censo en especiesde caza mayor: aplicación al caso del Jabalí (Sus scrofa L.) en la provincia de Burgos (Norte de España)La adquisición de madurez sexual en el camaleón común (Chamaeleo chamaeleon)Nuevas citas de Hemidactylus turcicus en la provincia de CáceresLa focha común (Fulica atra) en la isla de Gran Canaria: nueva especie nidificante en el archipiélago CanarioTraslado de huevos en incubación por la urraca (Pica pica)Predación de Falco peregrinus sobre Oryctolagus cuniculusCuatro nuevas especies de aves para Bolivia.Sobre la utilización de nidos de golondrina común abandonados.Parasitismo múltiple del críalo (Clamator glandarius)Predación del topo de rio (Galemys pyrenaicus, Geoffroy 1811) por parte de la lechuza común (Tyto alba, Scopoli 1769)Predación del zorro (Vulpes vulpes) sobre un pollo de buitre leonado (Gyps fulvus).Vulpes vulpes L. criando en una colonia de marmota (Marmota marmota L.) en el pirineo de LéridaObservaciones sobre la incidencia de Rattus (Fischer, 1803) en los cultivos ibéricos de caña de azúcaSituación actual de la jutiita de la tierra Capromys sanfelipensis (Rodentia, Mammalia)Notas sobre la intraducción y expansión de la ardilla común en Sierra Nevada, sureste de EspañaPeer reviewe

    Contacts in the last 90,000 years over the Strait of Gibraltar evidenced by genetic analysis of wild boar (Sus scrofa)

    Get PDF
    [EN] Contacts across the Strait of Gibraltar in the Pleistocene have been studied in different research papers, which have demonstrated that this apparent barrier has been permeable to human and fauna movements in both directions. Our study, based on the genetic analysis of wild boar (Sus scrofa), suggests that there has been contact between Africa and Europe through the Strait of Gibraltar in the Late Pleistocene (at least in the last 90,000 years), as shown by the partial analysis of mitochondrial DNA. Cytochrome b and the control region from North African wild boar indicate a close relationship with European wild boar, and even some specimens belong to a common haplotype in Europe. The analyses suggest the transformation of the wild boar phylogeography in North Africa by the emergence of a natural communication route in times when sea levels fell due to climatic changes, and possibly through human action, since contacts coincide with both the Last Glacial period and the increasing human dispersion via the strait.This study was supported by The Emirates Centre for Wildlife Propagation (Morocco). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Soria-Boix, C.; Donat-Torres, MP.; Urios, V. (2017). Contacts in the last 90,000 years over the Strait of Gibraltar evidenced by genetic analysis of wild boar (Sus scrofa). PLoS ONE. 12(7). doi:10.1371/journal.pone.0181929S12

    The Photosynthetic Apparatus and Its Regulation in the Aerobic Gammaproteobacterium Congregibacter litoralis gen. nov., sp. nov

    Get PDF
    BACKGROUND: There is accumulating evidence that in some marine environments aerobic bacteriochlorophyll a-producing bacteria represent a significant part of the microbial population. The interaction of photosynthesis and carbon metabolism in these interesting bacteria is still largely unknown and requires further investigation in order to estimate their contribution to the marine carbon cycle. METHODOLOGY/PRINCIPAL FINDINGS: Here, we analyzed the structure, composition and regulation of the photosynthetic apparatus in the obligately aerobic marine gammaproteobacterium KT71(T). Photoheterotrophically grown cells were characterized by a poorly developed lamellar intracytoplasmic membrane system, a type 1 light-harvesting antenna complex and a photosynthetic reaction center associated with a tetraheme cytochrome c. The only photosynthetic pigments produced were bacteriochlorophyll a and spirilloxanthin. Under semiaerobic conditions KT71(T) cells expressing a photosynthetic apparatus showed a light-dependent increase of growth yield in the range of 1.3-2.5 fold. The expression level of the photosynthetic apparatus depended largely on the utilized substrate, the intermediary carbon metabolism and oxygen tension. In addition, pigment synthesis was strongly influenced by light, with blue light exerting the most significant effect, implicating that proteins containing a BLUF domain may be involved in regulation of the photosynthetic apparatus. Several phenotypic traits in KT71(T) could be identified that correlated with the assumed redox state of growing cells and thus could be used to monitor the cellular redox state under various incubation conditions. CONCLUSIONS/SIGNIFICANCE: In a hypothetical model that explains the regulation of the photosynthetic apparatus in strain KT71(T) we propose that the expression of photosynthesis genes depends on the cellular redox state and is maximal under conditions that allow a balanced membrane redox state. So far, bacteria capable of an obligately aerobic, photosynthetic metabolism constitute a unique phenotype within the class Gammaproteobacteria, so that it is justified to propose a new genus and species, Congregibacter litoralis gen. nov, sp. nov., represented by the type strain KT71(T) ( = DSM 17192(T) = NBRC 104960(T))

    Diurnal timing of nonmigratory movement by birds: the importance of foraging spatial scales

    Get PDF
    Timing of activity can reveal an organism's efforts to optimize foraging either by minimizing energy loss through passive movement or by maximizing energetic gain through foraging. Here, we assess whether signals of either of these strategies are detectable in the timing of activity of daily, local movements by birds. We compare the similarities of timing of movement activity among species using six temporal variables: start of activity relative to sunrise, end of activity relative to sunset, relative speed at midday, number of movement bouts, bout duration and proportion of active daytime hours. We test for the influence of flight mode and foraging habitat on the timing of movement activity across avian guilds. We used 64 570 days of GPS movement data collected between 2002 and 2019 for local (non‐migratory) movements of 991 birds from 49 species, representing 14 orders. Dissimilarity among daily activity patterns was best explained by flight mode. Terrestrial soaring birds began activity later and stopped activity earlier than pelagic soaring or flapping birds. Broad‐scale foraging habitat explained less of the clustering patterns because of divergent timing of active periods of pelagic surface and diving foragers. Among pelagic birds, surface foragers were active throughout all 24 hrs of the day while diving foragers matched their active hours more closely to daylight hours. Pelagic surface foragers also had the greatest daily foraging distances, which was consistent with their daytime activity patterns. This study demonstrates that flight mode and foraging habitat influence temporal patterns of daily movement activity of birds.We thank the Nature Conservancy, the Bailey Wildlife Foundation, the Bluestone Foundation, the Ocean View Foundation, Biodiversity Research Institute, the Maine Outdoor Heritage Fund, the Davis Conservation Foundation and The U.S. Department of Energy (DE‐EE0005362), and the Darwin Initiative (19-026), EDP S.A. ‘Fundação para a Biodiversidade’ and the Portuguese Foundation for Science and Technology (FCT) (DL57/2019/CP 1440/CT 0021), Enterprise St Helena (ESH), Friends of National Zoo Conservation Research Grant Program and Conservation Nation, ConocoPhillips Global Signature Program, Maryland Department of Natural Resources, Cellular Tracking Technologies and Hawk Mountain Sanctuary for providing funding and in-kind support for the GPS data used in our analyses

    Natural flavonoids as potential multifunctional agents in prevention of diabetic cataract

    Get PDF
    Cataract is one of the earliest secondary complications of diabetes mellitus. The lens is a closed system with limited capability to repair or regenerate itself. Current evidence supports the view that cataractogenesis is a multifactorial process. Mechanisms related to glucose toxicity, namely oxidative stress, processes of non-enzymatic glycation and enhanced polyol pathway significantly contribute to the development of eye lens opacity under conditions of diabetes. There is an urgent need for inexpensive, non-surgical approaches to the treatment of cataract. Recently, considerable attention has been devoted to the search for phytochemical therapeutics. Several pharmacological actions of natural flavonoids may operate in the prevention of cataract since flavonoids are capable of affecting multiple mechanisms or etiological factors responsible for the development of diabetic cataract. In the present paper, natural flavonoids are reviewed as potential agents that could reduce the risk of cataract formation via affecting multiple pathways pertinent to eye lens opacification. In addition, the bioavailability of flavonoids for the lens is considered

    Diurnal timing of nonmigratory movement by birds: the importance of foraging spatial scales

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this recordData Availability statement: R code used in analyses can be accessed at datadryad.com. Most of the data used are publicly available at www.movebank.orgTiming of activity can reveal an organism's efforts to optimize foraging either by minimizing energy loss through passive movement or by maximizing energetic gain through foraging. Here, we assess whether signals of either of these strategies are detectable in the timing of activity of daily, local movements by birds. We compare the similarities of timing of movement activity among species using six temporal variables: start of activity relative to sunrise, end of activity relative to sunset, relative speed at midday, number of movement bouts, bout duration, and proportion of active daytime hours. We test for the influence of flight mode and foraging habitat on the timing of movement activity across avian guilds. We used 64570 days of GPS movement data collected between 2002 and 2019 for local (non‐migratory) movements of 991 birds from 49 species, representing 14 orders. Dissimilarity among daily activity patterns was best explained by flight mode. Terrestrial soaring birds began activity later and stopped activity earlier than pelagic soaring or flapping birds. Broad‐scale foraging habitat explained less of the clustering patterns because of divergent timing of active periods of pelagic surface and diving foragers. Among pelagic birds, surface foragers were active throughout the day while diving foragers matched their active hours more closely to daylight hours. Pelagic surface foragers also had the greatest daily foraging distances, which was consistent with their daytime activity patterns. This study demonstrates that flight mode and foraging habitat influence temporal patterns of daily movement activity of birds.Nature ConservancyBailey Wildlife FoundationBluestone FoundationOcean View FoundationBiodiversity Research InstituteMaine Outdoor Heritage FundDavis Conservation FoundationUS Department of EnergyDarwin InitiativePortuguese Foundation for Science and Technology (FCT)Enterprise St Helena (ESH)Hawk Mountain Sanctuar

    Absence of blood parasites in nestlings of the Eleonora\u27s Falcon (Falco eleonorae)

    No full text
    Volume: 36Start Page: 139End Page: 14
    corecore