64 research outputs found

    Health Effects of Phenolic Compounds Found in Extra-Virgin Olive Oil, By-Products, and Leaf of Olea europaea L.

    Get PDF
    Olea europaea L. fruit is a peculiar vegetal matrix containing high levels of fatty acids (98-99% of the total weight of extra-virgin olive oil, EVOO) and low quantities (1-2%) of phenolics, phytosterols, tocopherols, and squalene. Among these minor components, phenolics are relevant molecules for human health. This review is focused on their beneficial activity, in particular of hydroxytyrosol (HT), oleuropein (OLE), oleocanthal (OLC), and lignans found in EVOO, olive oil by-products and leaves. Specifically, the cardioprotective properties of the Mediterranean diet (MD) related to olive oil consumption, and the biological activities of polyphenols recovered from olive oil by-products and leaves were described. Recent European projects such as EPIC (European Prospective Investigation into Cancer and Nutrition) and EPICOR (long-term follow-up of antithrombotic management patterns in acute coronary syndrome patients) have demonstrated the functional and preventive activities of EVOO showing the relation both between cancer and nutrition and between consumption of EVOO, vegetables, and fruit and the incidence of coronary heart disease. The data reported in this review demonstrate that EVOO, one of the pillars of the MD, is the main product of Olea europaea L. fruits; leaves and by-products are secondary but precious products from which bioactive compounds can be recovered by green technologies and reused for food, agronomic, nutraceutical, and biomedical applications according to the circular economy strategy

    Up-Cycling of Olea europaea L. Ancient Cultivars Side Products: Study of a Combined Cosmetic-Food Supplement Treatment Based on Leaves and Olive Mill Wastewater Extracts

    Get PDF
    In recent years, a reversal of the global economic framework has been taking place: from the linear model, there has been a gradual transition to a circular model where by-products from the agri-food industry are taken and transformed into value products (upcycling) rather than being disposed of. Olive tree pruning represents an important biomass currently used for combustion; however, the leaf part of the olive tree is rich in phenolic substances, including hydroxytyrosol. Mill wastewater is also discarded, but it still contains high amounts of hydroxytyrosol. In this study, cosmetic and food supplement formulations were prepared using biophenols extracted from leaves and wastewater and were tested in a placebo-controlled study on healthy volunteers using a combined cosmetic and food supplement treatment. A significant improvement in skin health indicators (collagen density, elasticity, etc.) and a 17% improvement against Photo-induced Irritative Stimulus was observed

    Extra Virgin Olive Oil and Cardiovascular Protection in Chronic Kidney Disease

    Get PDF
    The high mortality related to chronic kidney disease (CKD) is not only due to the disease itself; in fact, CKD also represents an important risk factor for cardiovascular (CV) morbidity and mortality. Among the functional foods that seems to have cardioprotective action, extra virgin olive oil (EVOO) plays a pivotal health-promoting role. The aim of this study was to evaluate the possible cardioprotective effects of an EVOO containing a very high content (>900 ppm) of minor phenolic compounds (MPCs). The selected EVOO was analyzed by HPLC-DAD-MS to establish the MPC content. The Olea extract obtained from the selected EVOO was tested against the RAW 264.7 cell line in order to investigate its anti-inflammatory activity. We enrolled 40 CKD patients under conservative therapy for in vivo clinical testing. All CKD patients consumed 40 mL/day of raw EVOO for 9 weeks (T1). At baseline (T0) and at T1, we monitored the patients' blood and urinary parameters. The patients' body composition was assessed using bioelectrical impedance analysis and the carotid intima-media thickness (CIMT) using ultrasound imaging. At T1, we observed a decrease in inflammatory parameters, CIMT, and oxidative stress biomarkers. We also noticed improvements in lipid and purine metabolism, atherogenic indices, and body composition. Thus, this study highlighted the cardioprotective action of EVOO in nephropathic patients

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF

    The ALICE experiment at the CERN LHC

    Get PDF
    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 161626 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link
    corecore