7 research outputs found
3-phosphoglycerate dehydrogenase as target in cancer therapy
PhD ThesisCancer cells adapt their metabolism to simultaneously fulfil the requirements of energy production and biomass generation necessary to sustain high proliferation rates. This deregulated energy metabolism and the proteins responsible therefor provide a potential new route of targeting cancer that has not been thoroughly explored. 3-Phosphoglycerate dehydrogenase (PHGDH), which takes 3-phosphoglycerate (3-PG) out of the glycolytic pathway and into serine production, has been reported as potential target in certain breast cancer forms and melanoma. There is no known inhibitor of PHGDH to date to fully validate the target.
Inhibition of PHGDH was explored in breast cancer and melanoma cell lines using siRNA and shRNA interference techniques. Greater knockdown was achieved by siRNA resulting in better growth inhibition than when using shRNA expressing cell lines.
The substrate-binding pocket was investigated with substrate analogues and substrate-containing compounds. NAD+-binding was found to be stabilised by coordinated binding of substrates. The catalytic subunits of human PHGDH were crystallised and revealed a flexible lid domain that moves in response to substrate binding.
The NAD+-fragment adenosine 5’-diphosphoribose (ADPR) was shown to be a moderate inhibitor of the enzymatic activity of PHGDH and was used for assay validation. Cofactor analogues with different substituents around the pyridine ring were equally suitable to promote the oxidation of 3-PG.
A fragment screen was performed using differential scanning fluorimetry and hits were subsequently validated by competition isothermal titration calorimetry. To investigate the fragments in crystals of human PHGDH, a truncated form of PHGDH (construct 93) was engineered by limited proteolysis. Soaking of fragments into crystals of 93 confirmed binding of seven fragments. Structure-activity relationship studies were initiated around the confirmed hits
Targeting OGG1 arrests cancer cell proliferation by inducing replication stress
Altered oncogene expression in cancer cells causes loss of redox homeostasis resulting in oxidative DNA damage, e.g. 8-oxoguanine (8-oxoG), repaired by base excision repair (BER). PARP1 coordinates BER and relies on the upstream 8-oxoguanine-DNA glycosylase (OGG1) to recognise and excise 8-oxoG. Here we hypothesize that OGG1 may represent an attractive target to exploit reactive oxygen species (ROS) elevation in cancer. Although OGG1 depletion is well tolerated in non-transformed cells, we report here that OGG1 depletion obstructs A3 T-cell lymphoblastic acute leukemia growth in vitro and in vivo, validating OGG1 as a potential anti-cancer target. In line with this hypothesis, we show that OGG1 inhibitors (OGG1i) target a wide range of cancer cells, with a favourable therapeutic index compared to non-transformed cells. Mechanistically, OGG1i and shRNA depletion cause S-phase DNA damage, replication stress and proliferation arrest or cell death, representing a novel mechanistic approach to target cancer. This study adds OGG1 to the list of BER factors, e.g. PARP1, as potential targets for cancer treatment
Protein-metabolite interactomics of carbohydrate metabolism reveal regulation of lactate dehydrogenase
Metabolic networks are interconnected and influence diverse cellular processes. The protein-metabolite interactions that mediate these networks are frequently low affinity and challenging to systematically discover. We developed mass spectrometry integrated with equilibrium dialysis for the discovery of allostery systematically (MIDAS) to identify such interactions. Analysis of 33 enzymes from human carbohydrate metabolism identified 830 protein-metabolite interactions, including known regulators, substrates, and products as well as previously unreported interactions. We functionally validated a subset of interactions, including the isoform-specific inhibition of lactate dehydrogenase by long-chain acyl-coenzyme A. Cell treatment with fatty acids caused a loss of pyruvate-lactate interconversion dependent on lactate dehydrogenase isoform expression. These protein-metabolite interactions may contribute to the dynamic, tissue-specific metabolic flexibility that enables growth and survival in an ever-changing nutrient environment
Structure–Activity Relationships (SARs) of α-Ketothioamides as Inhibitors of Phosphoglycerate Dehydrogenase (PHGDH)
For many years now, targeting deregulation within cancer cells' metabolism has appeared as a promising strategy for the development of more specific and efficient cancer treatments. Recently, numerous reports highlighted the crucial role of the serine synthetic pathway, and particularly of the phosphoglycerate dehydrogenase (PHGDH), the first enzyme of the pathway, to sustain cancer progression. Yet, because of very weak potencies usually in cell-based settings, the inhibitors reported so far failed to lay ground on the potential of this approach. In this paper, we report a structure-activity relationship study of a series of α-ketothioamides that we have recently identified. Interestingly, this study led to a deeper understanding of the structure-activity relationship (SAR) in this series and to the identification of new PHGDH inhibitors. The activity of the more potent compounds was confirmed by cellular thermal shift assays and in cell-based experiments. We hope that this research will eventually provide a new entry point, based on this promising chemical scaffold, for the development of therapeutic agents targeting PHGDH
Crystal structures of human PAICS reveal substrate and product binding of an emerging cancer target
The bifunctional human enzyme phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthetase (PAICS) catalyzes two essential steps in the de novo purine biosynthesis pathway. PAICS is overexpressed in many cancers and could be a promising target for the development of cancer therapeutics. Here, using gene knockdowns and clonogenic survival and cell viability assays, we demonstrate that PAICS is required for growth and survival of prostate cancer cells. PAICS catalyzes the carboxylation of aminoimidazole ribonucleotide (AIR) and the subsequent conversion of carboxyaminoimidazole ribonucleotide (CAIR) and L-aspartate to N-succinylcarboxamide-5-aminoimidazole ribonucleotide (SAICAR). Of note, we present the first structures of human octameric PAICS in complexes with native ligands. In particular, we report the structure of PAICS with CAIR bound in the active sites of both domains and SAICAR bound in one of the SAICAR synthetase domains. Moreover, we report the PAICS structure with SAICAR and an ATP analog occupying the SAICAR synthetase active site. These structures provide insight into substrate and product binding and the architecture of the active sites, disclosing important structural information for rational design of PAICS inhibitors as potential anticancer drugs
Pharmacological targeting of MTHFD2 suppresses acute myeloid leukemia by inducing thymidine depletion and replication stress
The folate metabolism enzyme MTHFD2 (methylenetetrahydrofolate dehydrogenase/cyclohydrolase) is consistently overexpressed in cancer but its roles are not fully characterized, and current candidate inhibitors have limited potency for clinical development. In the present study, we demonstrate a role for MTHFD2 in DNA replication and genomic stability in cancer cells, and perform a drug screen to identify potent and selective nanomolar MTHFD2 inhibitors; protein cocrystal structures demonstrated binding to the active site of MTHFD2 and target engagement. MTHFD2 inhibitors reduced replication fork speed and induced replication stress followed by S-phase arrest and apoptosis of acute myeloid leukemia cells in vitro and in vivo, with a therapeutic window spanning four orders of magnitude compared with nontumorigenic cells. Mechanistically, MTHFD2 inhibitors prevented thymidine production leading to misincorporation of uracil into DNA and replication stress. Overall, these results demonstrate a functional link between MTHFD2-dependent cancer metabolism and replication stress that can be exploited therapeutically with this new class of inhibitors. Helleday and colleagues describe a nanomolar MTHFD2 inhibitor that causes replication stress and DNA damage accumulation in cancer cells via thymidine depletion, demonstrating a potential therapeutic strategy in AML tumors in vivo