49 research outputs found

    encephalitis in Florida

    Get PDF
    Background: Eastern Equine Encephalitis virus (EEEV) is an alphavirus with high pathogenicity in both humans and horses. Florida continues to have the highest occurrence of human cases in the USA, with four fatalities recorded in 2010. Unlike other states, Florida supports year-round EEEV transmission. This research uses GIS to examine spatial patterns of documented horse cases during 2005–2010 in order to understand the relationships between habitat and transmission intensity of EEEV in Florida. Methods: Cumulative incidence rates of EEE in horses were calculated for each county. Two cluster analyses were performed using density-based spatial clustering of applications with noise (DBSCAN). The first analysis was based on regional clustering while the second focused on local clustering. Ecological associations of EEEV were examined using compositional analysis and Euclidean distance analysis to determine if the proportion or proximity of certain habitats played a role in transmission. Results: The DBSCAN algorithm identified five distinct regional spatial clusters that contained 360 of the 438 horse cases. The local clustering resulted in 18 separate clusters containing 105 of the 438 cases. Both the compositional analysis and Euclidean distance analysis indicated that the top five habitats positively associated with horse cases were rural residential areas, crop and pastureland, upland hardwood forests, vegetated non-forested wetlands, an

    Successful interruption of the transmission of Onchocerca volvulus in Mpamba-Nkusi focus, Kibaale district, mid-western Uganda

    Get PDF
    Background: The Mpamba-Nkusi onchocerciasis focus is situated in the mid-western part of Uganda. It has an area of 300 km2 and used to have Simulium neavei as the vector which develops in a phoretic association on freshwater crabs. Ground larviciding with temephos (Abate EC500) was initiated in June 2002. All the 330 communities in this focus have undergone annual treatment with ivermectin since 1995 and were later shifted to semi-annual treatment in 2009.Objective: To establish the impact of mass drug administration in combination with larviciding on the interruption of O. volvulus transmission.Design: Longitudinal studySetting: Rural areas in Mpamba-Nkusi focus, Kibaale district.Subjects: Individuals five years and above living in the focus.Interventions: Annual and semi-annual treatment with ivermectin supplemented by vector elimination were used. Epidemiological, entomological and serological assessments were conducted.Results: Freshwater crabs (n = 14,391) caught from monitoring sites (n = 41) since 2008 were negative for immature stages of S. neavei. The S.neavei population was reduced following trial and initiation of ground larviciding. No adult S. neavei has been caught in the focus for over five years. Parasitological examination of individuals residing in the focus revealed a microfilaria (mf) prevalence of 0.3% (95% CI 0 – 0.65%; n = 732) in 2012. Serological assays testing for Onchocerca volvulus antibodies conducted on 3351 children <15 years in 2009 indicated point prevalence of 0.6% , (95% CI, 0.3-0.8%) while in 2012 another survey conducted among 3,407 children, only 1/3407 (0.03%, 95% CI, 0-0.09%) individual was positive for O. volvulus antibodies.Conclusions: Epidemiological and entomological findings suggest that interruption of transmission has been achieved

    Genome-wide analysis of ivermectin response by Onchocerca volvulus reveals that genetic drift and soft selective sweeps contribute to loss of drug sensitivity

    Get PDF
    Treatment of onchocerciasis using mass ivermectin administration has reduced morbidity and transmission throughout Africa and Central/South America. Mass drug administration is likely to exert selection pressure on parasites, and phenotypic and genetic changes in several Onchocerca volvulus populations from Cameroon and Ghana-exposed to more than a decade of regular ivermectin treatment-have raised concern that sub-optimal responses to ivermectin's anti-fecundity effect are becoming more frequent and may spread.Pooled next generation sequencing (Pool-seq) was used to characterise genetic diversity within and between 108 adult female worms differing in ivermectin treatment history and response. Genome-wide analyses revealed genetic variation that significantly differentiated good responder (GR) and sub-optimal responder (SOR) parasites. These variants were not randomly distributed but clustered in ~31 quantitative trait loci (QTLs), with little overlap in putative QTL position and gene content between the two countries. Published candidate ivermectin SOR genes were largely absent in these regions; QTLs differentiating GR and SOR worms were enriched for genes in molecular pathways associated with neurotransmission, development, and stress responses. Finally, single worm genotyping demonstrated that geographic isolation and genetic change over time (in the presence of drug exposure) had a significantly greater role in shaping genetic diversity than the evolution of SOR.This study is one of the first genome-wide association analyses in a parasitic nematode, and provides insight into the genomics of ivermectin response and population structure of O. volvulus. We argue that ivermectin response is a polygenically-determined quantitative trait (QT) whereby identical or related molecular pathways but not necessarily individual genes are likely to determine the extent of ivermectin response in different parasite populations. Furthermore, we propose that genetic drift rather than genetic selection of SOR is the underlying driver of population differentiation, which has significant implications for the emergence and potential spread of SOR within and between these parasite populations

    Methods for comparative metagenomics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metagenomics is a rapidly growing field of research that aims at studying uncultured organisms to understand the true diversity of microbes, their functions, cooperation and evolution, in environments such as soil, water, ancient remains of animals, or the digestive system of animals and humans. The recent development of ultra-high throughput sequencing technologies, which do not require cloning or PCR amplification, and can produce huge numbers of DNA reads at an affordable cost, has boosted the number and scope of metagenomic sequencing projects. Increasingly, there is a need for new ways of comparing multiple metagenomics datasets, and for fast and user-friendly implementations of such approaches.</p> <p>Results</p> <p>This paper introduces a number of new methods for interactively exploring, analyzing and comparing multiple metagenomic datasets, which will be made freely available in a new, comparative version 2.0 of the stand-alone metagenome analysis tool MEGAN.</p> <p>Conclusion</p> <p>There is a great need for powerful and user-friendly tools for comparative analysis of metagenomic data and MEGAN 2.0 will help to fill this gap.</p

    Targeting pathogen metabolism without collateral damage to the host

    Get PDF
    The development of drugs that can inactivate disease-causing cells (e.g. cancer cells or parasites) without causing collateral damage to healthy or to host cells is complicated by the fact that many proteins are very similar between organisms. Nevertheless, due to subtle, quantitative differences between the biochemical reaction networks of target cell and host, a drug can limit the flux of the same essential process in one organism more than in another. We identified precise criteria for this â €network-based' drug selectivity, which can serve as an alternative or additive to structural differences. We combined computational and experimental approaches to compare energy metabolism in the causative agent of sleeping sickness, Trypanosoma brucei, with that of human erythrocytes, and identified glucose transport and glyceraldehyde-3-phosphate dehydrogenase as the most selective antiparasitic targets. Computational predictions were validated experimentally in a novel parasite-erythrocytes co-culture system. Glucose-transport inhibitors killed trypanosomes without killing erythrocytes, neurons or liver cells

    Predicting the environmental suitability for onchocerciasis in Africa as an aid to elimination planning

    Get PDF
    Recent evidence suggests that, in some foci, elimination of onchocerciasis from Africa may be feasible with mass drug administration (MDA) of ivermectin. To achieve continental elimination of transmission, mapping surveys will need to be conducted across all implementation units (IUs) for which endemicity status is currently unknown. Using boosted regression tree models with optimised hyperparameter selection, we estimated environmental suitability for onchocerciasis at the 5 × 5-km resolution across Africa. In order to classify IUs that include locations that are environmentally suitable, we used receiver operating characteristic (ROC) analysis to identify an optimal threshold for suitability concordant with locations where onchocerciasis has been previously detected. This threshold value was then used to classify IUs (more suitable or less suitable) based on the location within the IU with the largest mean prediction. Mean estimates of environmental suitability suggest large areas across West and Central Africa, as well as focal areas of East Africa, are suitable for onchocerciasis transmission, consistent with the presence of current control and elimination of transmission efforts. The ROC analysis identified a mean environmental suitability index of 0.71 as a threshold to classify based on the location with the largest mean prediction within the IU. Of the IUs considered for mapping surveys, 50.2% exceed this threshold for suitability in at least one 5×5-km location. The formidable scale of data collection required to map onchocerciasis endemicity across the African continent presents an opportunity to use spatial data to identify areas likely to be suitable for onchocerciasis transmission. National onchocerciasis elimination programmes may wish to consider prioritising these IUs for mapping surveys as human resources, laboratory capacity, and programmatic schedules may constrain survey implementation, and possibly delaying MDA initiation in areas that would ultimately qualify

    Avian Host-Selection by Culex pipiens in Experimental Trials

    Get PDF
    Evidence from field studies suggests that Culex pipiens, the primary mosquito vector of West Nile virus (WNV) in the northeastern and north central United States, feeds preferentially on American robins (Turdus migratorius). To determine the contribution of innate preferences to observed preference patterns in the field, we conducted host preference trials with a known number of adult female C. pipiens in outdoor cages comparing the relative attractiveness of American robins with two common sympatric bird species, European starling, Sternus vulgaris and house sparrow, Passer domesticus. Host seeking C. pipiens were three times more likely to enter robin-baited traps when with the alternate host was a European starling (n = 4 trials; OR = 3.06; CI [1.42–6.46]) and almost twice more likely when the alternative was a house sparrow (n = 8 trials; OR = 1.80; CI = [1.22–2.90]). There was no difference in the probability of trap entry when two robins were offered (n = 8 trials). Logistic regression analysis determined that the age, sex and weight of the birds, the date of the trial, starting-time, temperature, humidity, wind-speed and age of the mosquitoes had no effect on the probability of a choosing a robin over an alternate bird. Findings indicate that preferential feeding by C. pipiens mosquitoes on certain avian hosts is likely to be inherent, and we discuss the implications innate host preferences may have on enzootic WNV transmission

    The apicomplexan plastid and its evolution

    Get PDF
    Protistan species belonging to the phylum Apicomplexa have a non-photosynthetic secondary plastid—the apicoplast. Although its tiny genome and even the entire nuclear genome has been sequenced for several organisms bearing the organelle, the reason for its existence remains largely obscure. Some of the functions of the apicoplast, including housekeeping ones, are significantly different from those of other plastids, possibly due to the organelle’s unique symbiotic origin

    MAPK ERK Signaling Regulates the TGF-β1-Dependent Mosquito Response to Plasmodium falciparum

    Get PDF
    Malaria is caused by infection with intraerythrocytic protozoa of the genus Plasmodium that are transmitted by Anopheles mosquitoes. Although a variety of anti-parasite effector genes have been identified in anopheline mosquitoes, little is known about the signaling pathways that regulate these responses during parasite development. Here we demonstrate that the MEK-ERK signaling pathway in Anopheles is controlled by ingested human TGF-β1 and finely tunes mosquito innate immunity to parasite infection. Specifically, MEK-ERK signaling was dose-dependently induced in response to TGF-β1 in immortalized cells in vitro and in the A. stephensi midgut epithelium in vivo. At the highest treatment dose of TGF-β1, inhibition of ERK phosphorylation increased TGF-β1-induced expression of the anti-parasite effector gene nitric oxide synthase (NOS), suggesting that increasing levels of ERK activation negatively feed back on induced NOS expression. At infection levels similar to those found in nature, inhibition of ERK activation reduced P. falciparum oocyst loads and infection prevalence in A. stephensi and enhanced TGF-β1-mediated control of P. falciparum development. Taken together, our data demonstrate that malaria parasite development in the mosquito is regulated by a conserved MAPK signaling pathway that mediates the effects of an ingested cytokine

    The Mitochondrial Genome of Toxocara canis

    Get PDF
    Toxocara canis (Ascaridida: Nematoda), which parasitizes (at the adult stage) the small intestine of canids, can be transmitted to a range of other mammals, including humans, and can cause the disease toxocariasis. Despite its significance as a pathogen, the genetics, epidemiology and biology of this parasite remain poorly understood. In addition, the zoonotic potential of related species of Toxocara, such as T. cati and T. malaysiensis, is not well known. Mitochondrial DNA is known to provide genetic markers for investigations in these areas, but complete mitochondrial genomic data have been lacking for T. canis and its congeners. In the present study, the mitochondrial genome of T. canis was amplified by long-range polymerase chain reaction (long PCR) and sequenced using a primer-walking strategy. This circular mitochondrial genome was 14162 bp and contained 12 protein-coding, 22 transfer RNA, and 2 ribosomal RNA genes consistent for secernentean nematodes, including Ascaris suum and Anisakis simplex (Ascaridida). The mitochondrial genome of T. canis provides genetic markers for studies into the systematics, population genetics and epidemiology of this zoonotic parasite and its congeners. Such markers can now be used in prospecting for cryptic species and for exploring host specificity and zoonotic potential, thus underpinning the prevention and control of toxocariasis in humans and other hosts
    corecore