9 research outputs found

    Exploring fusion-reactor physics with high-power electron cyclotron resonance heating on ASDEX Upgrade

    Get PDF
    The electron cyclotron resonance heating (ECRH) system of the ASDEX Upgrade tokomak has been upgraded over the last 15 years from a 2MW, 2 s, 140 GHz system to an 8MW, 10 s, dual frequency system (105/140 GHz). The power exceeds the L/H power threshold by at least a factor of two, even for high densities, and roughly equals the installed ion cyclotron range of frequencies power. The power of both wave heating systems together (>10MW in the plasma) is about half of the available neutral beam injection (NBI) power, allowing significant variations of torque input, of the shape of the heating profile and of Qe/Qi, even at high heating power. For applications at a low magnetic field an X3-heating scheme is routinely in use. Such a scenario is now also forseen for ITER to study the first H-modes at one third of the full field. This versatile system allows one to address important issues fundamental to a fusion reactor: H-mode operation with dominant electron heating, accessing low collisionalities in full metal devices (also related to suppression of edge localized modes with resonant magnetic perturbations), influence of Te/Ti and rotational shear on transport, and dependence of impurity accumulation on heating profiles. Experiments on all these subjects have been carried out over the last few years and will be presented in this contribution. The adjustable localized current drive capability of ECRH allows dedicated variations of the shape of the q-profile and the study of their influence on non-inductive tokamak operation (so far at q95_{95}>5.3). The ultimate goal of these experiments is to use the experimental findings to refine theoretical models such that they allow a reliable design of operational schemes for reactor size devices. In this respect, recent studies comparing a quasi-linear approach (TGLF) with fully non-linear modeling (GENE) of non-inductive high-beta plasmas will be reported

    Electron temperature fluctuation measurements with Correlation Electron Cyclotron Emission in L-mode and I-mode plasmas at ASDEX Upgrade

    No full text
    The Correlation Electron Cyclotron Emission (CECE) diagnostic at ASDEX Upgrade (AUG) is used to investigate the features of outer core and pedestal (ρpol = 0.85-1.0) turbulence across confinement regime transitions. The I-mode confinement regime is a promising operational scenario for future fusion reactors because it features high energy confinement without high particle confinement, but the nature of the edge and pedestal turbulence in I-mode plasmas is still under investigation. The edge Weakly Coherent Mode (WCM) appears in the I-mode pedestal and may play a role in transport. In this work we explore electron temperature (Te) fluctuations in the plasma outer core and pedestal using a 24-channel high radial resolution CECE radiometer. CECE measurements provide turbulence information including the Te fluctuation amplitude, turbulent spectra, and radial localization of turbulent features. With CECE measurements we show that the WCM is localized in the pedestal region in both L-mode and I-mode and is measured in optically thick plasmas with a Te fluctuation amplitude of 2.3%. Broadband drift wave turbulence is measured in the outer core with a Te fluctuation amplitude of <1%. A second CECE system recently installed at AUG allowed for non-standard fluctuation measurements during L-mode and I-mode experiments. The second CECE system was toroidally separated from the primary system, allowing measurements of the long-range toroidal correlation of the WCM indicating its low toroidal mode number. A reflectometer sharing a line of sight with the second CECE system enabled density-temperature cross-phase (αne Te ) measurements. The WCM αne Te changes between L-mode and I-mode as the Te gradient steepens

    A Glucose-Insulin Pharmacodynamic Surface Modeling Validation and Comparison of Metabolic System Models

    Get PDF
    invited special editionMetabolic systemmodeling for model-based glycaemic control is becoming increasingly important. Few metabolic system models are clinically validated for both fit to the data and prediction ability. This research introduces a new additional form of pharmaco-dynamic (PD) surface comparison for model analysis and validation. These 3D surfaces are developed for 3 clinically validated models and 1 model with an added saturation dynamic. The models include the well-known Minimal Model. They are fit to two different data sets of clinical PD data from hyperinsulinaemic clamp studies at euglycaemia and/or hyperglycaemia. The models are fit to the first data set to determine an optimal set of population parameters. The second data set is used to test trend prediction of the surface modeling as it represents a lower insulin sensitivity cohort and should thus require only scaling in these (or related) parameters to match this data set. This particular approach clearly highlights differences in modelingmethods, and the model dynamics utilized that may not appear as clearly in other fitting or prediction validation methods. Across all models saturation of insulin action is seen to be an important determinant of prediction and fit quality. In particular, the well-reported under-modeling of insulin sensitivity in the Minimal Model can be seen in this context to be a result of a lack of saturation dynamics, which in turn affects its ability to detect differences between cohorts. The overall approach of examining PD surfaces is seen to be an effective means of analyzing and thus validating a metabolic model’s inherent dynamics and basic trend prediction on a population level, but is not a replacement for data driven, patient-specific fit and prediction validation for clinical use. The overall method presented could be readily generalized to similar PD systems and therapeutics

    Literaturverzeichnis

    No full text
    corecore