247 research outputs found

    Randomized controlled phase 2 trial of hydroxychloroquine in childhood interstitial lung disease

    Get PDF
    Background No results of controlled trials are available for any of the few treatments offered to children with interstitial lung diseases (chILD). We evaluated hydroxychloroquine (HCQ) in a phase 2, prospective, multicentre, 1:1-randomized, double-blind, placebo-controlled, parallel-group/crossover trial. HCQ (START arm) or placebo were given for 4 weeks. Then all subjects received HCQ for another 4 weeks. In the STOP arm subjects already taking HCQ were randomized to 12 weeks of HCQ or placebo (= withdrawal of HCQ). Then all subjects stopped treatment and were observed for another 12 weeks. Results 26 subjects were included in the START arm, 9 in the STOP arm, of these four subjects participated in both arms. The primary endpoint, presence or absence of a response to treatment, assessed as oxygenation (calculated from a change in transcutaneous O 2 -saturation of ≄ 5%, respiratory rate ≄ 20% or level of respiratory support), did not differ between placebo and HCQ groups. Secondary endpoints including change of O 2 -saturation ≄ 3%, health related quality of life, pulmonary function and 6-min-walk-test distance, were not different between groups. Finally combining all placebo and all HCQ treatment periods did not identify significant treatment effects. Overall effect sizes were small. HCQ was well tolerated, adverse events were not different between placebo and HCQ. Conclusions Acknowledging important shortcomings of the study, including a small study population, the treatment duration, lack of outcomes like lung function testing below age of 6 years, the small effect size of HCQ treatment observed requires careful reassessments of prescriptions in everyday practice (EudraCT-Nr.: 2013-003714-40, www.clinicaltrialsregister.eu , registered 02.07.2013)

    Meta-Analysis of the Alzheimer\u27s Disease Human Brain Transcriptome and Functional Dissection in Mouse Models.

    Get PDF
    We present a consensus atlas of the human brain transcriptome in Alzheimer\u27s disease (AD), based on meta-analysis of differential gene expression in 2,114 postmortem samples. We discover 30 brain coexpression modules from seven regions as the major source of AD transcriptional perturbations. We next examine overlap with 251 brain differentially expressed gene sets from mouse models of AD and other neurodegenerative disorders. Human-mouse overlaps highlight responses to amyloid versus tau pathology and reveal age- and sex-dependent expression signatures for disease progression. Human coexpression modules enriched for neuronal and/or microglial genes broadly overlap with mouse models of AD, Huntington\u27s disease, amyotrophic lateral sclerosis, and aging. Other human coexpression modules, including those implicated in proteostasis, are not activated in AD models but rather following other, unexpected genetic manipulations. Our results comprise a cross-species resource, highlighting transcriptional networks altered by human brain pathophysiology and identifying correspondences with mouse models for AD preclinical studies

    Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires

    Get PDF
    The production of tt‟ , W+bb‟ and W+cc‟ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓΜ , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of tt‟t\overline{t}, W+bb‟W+b\overline{b} and W+cc‟W+c\overline{c} is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 ±\pm 0.02 \mbox{fb}^{-1}. The WW bosons are reconstructed in the decays W→ℓΜW\rightarrow\ell\nu, where ℓ\ell denotes muon or electron, while the bb and cc quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions

    Ophthalmology

    Get PDF
    OBJECTIVE: In the current study we aimed to identify metabolites associated with age-related macular degeneration (AMD) by performing the largest metabolome association analysis in AMD to date. In addition, we aimed to determine the effect of AMD-associated genetic variants on metabolite levels, and aimed to investigate associations between the identified metabolites and activity of the complement system, one of the main AMD-associated disease pathways. DESIGN: Case-control assocation analysis of metabolomics data. SUBJECTS: 2,267 AMD cases and 4,266 controls from five European cohorts. METHODS: Metabolomics was performed using a high-throughput H-NMR metabolomics platform, which allows the quantification of 146 metabolite measurements and 79 derivative values. Metabolome-AMD associations were studied using univariate logistic regression analyses. The effect of 52 AMD-associated genetic variants on the identified metabolites was investigated using linear regression. In addition, associations between the identified metabolites and activity of the complement pathway (defined by the C3d/C3 ratio) were investigated using linear regression. MAIN OUTCOME MEASURES: Metabolites associated with AMD RESULTS: We identified 60 metabolites that were significantly associated with AMD, including increased levels of large and extra-large HDL subclasses and decreased levels of VLDL, amino acids and citrate. Out of 52 AMD-associated genetic variants, seven variants were significantly associated with 34 of the identified metabolites. The strongest associations were identified for genetic variants located in or near genes involved in lipid metabolism (ABCA1, CETP, APOE, LIPC) with metabolites belonging to the large and extra-large HDL subclasses. In addition, 57 out of 60 metabolites were significantly associated with complement activation levels, and these associations were independent of AMD status. Increased large and extra-large HDL levels and decreased VLDL and amino acid levels were associated with increased complement activation. CONCLUSIONS: Lipoprotein levels were associated with AMD-associated genetic variants, while decreased essential amino acids may point to nutritional deficiencies in AMD. We observed strong associations between the vast majority of the AMD-associated metabolites and systemic complement activation levels, independent of AMD status. This may indicate biological interactions between the main AMD disease pathways, and suggests that multiple pathways may need to be targeted simultaneously for successful treatment of AMD

    Study of the rare B-s(0) and B-0 decays into the pi(+) pi(-) mu(+) mu(-) final state

    Get PDF
    A search for the rare decays Bs0→π+π−Ό+Ό−B_s^0 \to \pi^+\pi^-\mu^+\mu^- and B0→π+π−Ό+Ό−B^0 \to \pi^+\pi^-\mu^+\mu^- is performed in a data set corresponding to an integrated luminosity of 3.0 fb−1^{-1} collected by the LHCb detector in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV. Decay candidates with pion pairs that have invariant mass in the range 0.5-1.3 GeV/c2c^2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0→π+π−Ό+Ό−B_s^0 \to \pi^+\pi^-\mu^+\mu^- and the first evidence of the decay B0→π+π−Ό+Ό−B^0 \to \pi^+\pi^-\mu^+\mu^- are obtained and the branching fractions are measured to be B(Bs0→π+π−Ό+Ό−)=(8.6±1.5 (stat)±0.7 (syst)±0.7 (norm))×10−8\mathcal{B}(B_s^0 \to \pi^+\pi^-\mu^+\mu^-)=(8.6\pm 1.5\,({\rm stat}) \pm 0.7\,({\rm syst})\pm 0.7\,({\rm norm}))\times 10^{-8} and B(B0→π+π−Ό+Ό−)=(2.11±0.51 (stat)±0.15 (syst)±0.16 (norm))×10−8\mathcal{B}(B^0 \to \pi^+\pi^-\mu^+\mu^-)=(2.11\pm 0.51\,({\rm stat}) \pm 0.15\,({\rm syst})\pm 0.16\,({\rm norm}) )\times 10^{-8}, where the third uncertainty is due to the branching fraction of the decay B0→J/ψ(→Ό+Ό−)K∗(890)0(→K+π−)B^0\to J/\psi(\to \mu^+\mu^-)K^*(890)^0(\to K^+\pi^-), used as a normalisation.A search for the rare decays Bs0→π+π−Ό+Ό− and B0→π+π−Ό+Ό− is performed in a data set corresponding to an integrated luminosity of 3.0 fb−1 collected by the LHCb detector in proton–proton collisions at centre-of-mass energies of 7 and 8 TeV . Decay candidates with pion pairs that have invariant mass in the range 0.5–1.3 GeV/c2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0→π+π−Ό+Ό− and the first evidence of the decay B0→π+π−Ό+Ό− are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(Bs0→π+π−Ό+Ό−)=(8.6±1.5 (stat)±0.7 (syst)±0.7(norm))×10−8 and B(B0→π+π−Ό+Ό−)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))×10−8 , where the third uncertainty is due to the branching fraction of the decay B0→J/ψ(→Ό+Ό−)K⁎(892)0(→K+π−) , used as a normalisation.A search for the rare decays Bs0→π+π−Ό+Ό− and B0→π+π−Ό+Ό− is performed in a data set corresponding to an integrated luminosity of 3.0 fb−1 collected by the LHCb detector in proton–proton collisions at centre-of-mass energies of 7 and 8 TeV . Decay candidates with pion pairs that have invariant mass in the range 0.5–1.3 GeV/c2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0→π+π−Ό+Ό− and the first evidence of the decay B0→π+π−Ό+Ό− are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(Bs0→π+π−Ό+Ό−)=(8.6±1.5 (stat)±0.7 (syst)±0.7(norm))×10−8 and B(B0→π+π−Ό+Ό−)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))×10−8 , where the third uncertainty is due to the branching fraction of the decay B0→J/ψ(→Ό+Ό−)K⁎(892)0(→K+π−) , used as a normalisation.A search for the rare decays Bs0→π+π−Ό+Ό−B_s^0 \to \pi^+\pi^-\mu^+\mu^- and B0→π+π−Ό+Ό−B^0 \to \pi^+\pi^-\mu^+\mu^- is performed in a data set corresponding to an integrated luminosity of 3.0 fb−1^{-1} collected by the LHCb detector in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV. Decay candidates with pion pairs that have invariant mass in the range 0.5-1.3 GeV/c2c^2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0→π+π−Ό+Ό−B_s^0 \to \pi^+\pi^-\mu^+\mu^- and the first evidence of the decay B0→π+π−Ό+Ό−B^0 \to \pi^+\pi^-\mu^+\mu^- are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(Bs0→π+π−Ό+Ό−)=(8.6±1.5 (stat)±0.7 (syst)±0.7 (norm))×10−8\mathcal{B}(B_s^0 \to \pi^+\pi^-\mu^+\mu^-)=(8.6\pm 1.5\,({\rm stat}) \pm 0.7\,({\rm syst})\pm 0.7\,({\rm norm}))\times 10^{-8} and B(B0→π+π−Ό+Ό−)=(2.11±0.51 (stat)±0.15 (syst)±0.16 (norm))×10−8\mathcal{B}(B^0 \to \pi^+\pi^-\mu^+\mu^-)=(2.11\pm 0.51\,({\rm stat}) \pm 0.15\,({\rm syst})\pm 0.16\,({\rm norm}) )\times 10^{-8}, where the third uncertainty is due to the branching fraction of the decay B0→J/ψ(→Ό+Ό−)K∗(890)0(→K+π−)B^0\to J/\psi(\to \mu^+\mu^-)K^*(890)^0(\to K^+\pi^-), used as a normalisation

    Angular analysis of the B-0 -> K*(0) e(+) e(-) decay in the low-q(2) region

    Get PDF
    An angular analysis of the B0→K∗0e+e−B^0 \rightarrow K^{*0} e^+ e^- decay is performed using a data sample, corresponding to an integrated luminosity of 3.0 {\mbox{fb}^{-1}}, collected by the LHCb experiment in pppp collisions at centre-of-mass energies of 7 and 8 TeV during 2011 and 2012. For the first time several observables are measured in the dielectron mass squared (q2q^2) interval between 0.002 and 1.120 GeV2 ⁣/c4{\mathrm{\,Ge\kern -0.1em V^2\!/}c^4}. The angular observables FLF_{\mathrm{L}} and ATReA_{\mathrm{T}}^{\mathrm{Re}} which are related to the K∗0K^{*0} polarisation and to the lepton forward-backward asymmetry, are measured to be FL=0.16±0.06±0.03F_{\mathrm{L}}= 0.16 \pm 0.06 \pm0.03 and ATRe=0.10±0.18±0.05A_{\mathrm{T}}^{\mathrm{Re}} = 0.10 \pm 0.18 \pm 0.05, where the first uncertainty is statistical and the second systematic. The angular observables AT(2)A_{\mathrm{T}}^{(2)} and ATImA_{\mathrm{T}}^{\mathrm{Im}} which are sensitive to the photon polarisation in this q2q^2 range, are found to be AT(2)=−0.23±0.23±0.05A_{\mathrm{T}}^{(2)} = -0.23 \pm 0.23 \pm 0.05 and ATIm=0.14±0.22±0.05A_{\mathrm{T}}^{\mathrm{Im}} =0.14 \pm 0.22 \pm 0.05. The results are consistent with Standard Model predictions.An angular analysis of the B0^{0} → K^{*}^{0} e+^{+} e−^{−} decay is performed using a data sample, corresponding to an integrated luminosity of 3.0 fb−1^{−1}, collected by the LHCb experiment in pp collisions at centre-of-mass energies of 7 and 8 TeV during 2011 and 2012. For the first time several observables are measured in the dielectron mass squared (q2^{2}) interval between 0.002 and 1.120 GeV2^{2} /c4^{4}. The angular observables FL_{L} and ATRe_{T}^{Re} which are related to the K^{*}^{0} polarisation and to the lepton forward-backward asymmetry, are measured to be FL_{L} = 0.16 ± 0.06 ± 0.03 and ATRe_{T}^{Re}  = 0.10 ± 0.18 ± 0.05, where the first uncertainty is statistical and the second systematic. The angular observables AT(2)_{T}^{(2)} and ATIm_{T}^{Im} which are sensitive to the photon polarisation in this q2^{2} range, are found to be AT(2)_{T}^{(2)}  = − 0.23 ± 0.23 ± 0.05 and ATIm_{T}^{Im}  = 0.14 ± 0.22 ± 0.05. The results are consistent with Standard Model predictions.An angular analysis of the B0→K∗0e+e−B^0 \rightarrow K^{*0} e^+ e^- decay is performed using a data sample, corresponding to an integrated luminosity of 3.0 {\mbox{fb}^{-1}}, collected by the LHCb experiment in pppp collisions at centre-of-mass energies of 7 and 8 TeV during 2011 and 2012. For the first time several observables are measured in the dielectron mass squared (q2q^2) interval between 0.002 and 1.120 GeV2 ⁣/c4{\mathrm{\,Ge\kern -0.1em V^2\!/}c^4}. The angular observables FLF_{\mathrm{L}} and ATReA_{\mathrm{T}}^{\mathrm{Re}} which are related to the K∗0K^{*0} polarisation and to the lepton forward-backward asymmetry, are measured to be FL=0.16±0.06±0.03F_{\mathrm{L}}= 0.16 \pm 0.06 \pm0.03 and ATRe=0.10±0.18±0.05A_{\mathrm{T}}^{\mathrm{Re}} = 0.10 \pm 0.18 \pm 0.05, where the first uncertainty is statistical and the second systematic. The angular observables AT(2)A_{\mathrm{T}}^{(2)} and ATImA_{\mathrm{T}}^{\mathrm{Im}} which are sensitive to the photon polarisation in this q2q^2 range, are found to be AT(2)=−0.23±0.23±0.05A_{\mathrm{T}}^{(2)} = -0.23 \pm 0.23 \pm 0.05 and ATIm=0.14±0.22±0.05A_{\mathrm{T}}^{\mathrm{Im}} =0.14 \pm 0.22 \pm 0.05. The results are consistent with Standard Model predictions

    Observation of the B0 → ρ0ρ0 decay from an amplitude analysis of B0 → (π+π−)(π+π−) decays

    Get PDF
    Proton–proton collision data recorded in 2011 and 2012 by the LHCb experiment, corresponding to an integrated luminosity of 3.0 fb−1 , are analysed to search for the charmless B0→ρ0ρ0 decay. More than 600 B0→(π+π−)(π+π−) signal decays are selected and used to perform an amplitude analysis, under the assumption of no CP violation in the decay, from which the B0→ρ0ρ0 decay is observed for the first time with 7.1 standard deviations significance. The fraction of B0→ρ0ρ0 decays yielding a longitudinally polarised final state is measured to be fL=0.745−0.058+0.048(stat)±0.034(syst) . The B0→ρ0ρ0 branching fraction, using the B0→ϕK⁎(892)0 decay as reference, is also reported as B(B0→ρ0ρ0)=(0.94±0.17(stat)±0.09(syst)±0.06(BF))×10−6

    Measurement of the (eta c)(1S) production cross-section in proton-proton collisions via the decay (eta c)(1S) -> p(p)over-bar

    Get PDF
    The production of the ηc(1S)\eta_c (1S) state in proton-proton collisions is probed via its decay to the ppˉp \bar{p} final state with the LHCb detector, in the rapidity range 2.06.52.0 6.5 GeV/c. The cross-section for prompt production of ηc(1S)\eta_c (1S) mesons relative to the prompt J/ψJ/\psi cross-section is measured, for the first time, to be σηc(1S)/σJ/ψ=1.74±0.29±0.28±0.18B\sigma_{\eta_c (1S)}/\sigma_{J/\psi} = 1.74 \pm 0.29 \pm 0.28 \pm 0.18 _{B} at a centre-of-mass energy s=7\sqrt{s} = 7 TeV using data corresponding to an integrated luminosity of 0.7 fb−1^{-1}, and σηc(1S)/σJ/ψ=1.60±0.29±0.25±0.17B\sigma_{\eta_c (1S)}/\sigma_{J/\psi} = 1.60 \pm 0.29 \pm 0.25 \pm 0.17 _{B} at s=8\sqrt{s} = 8 TeV using 2.0 fb−1^{-1}. The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the ηc(1S)\eta_c (1S) and J/ψJ/\psi decays to the ppˉp \bar{p} final state. In addition, the inclusive branching fraction of bb-hadron decays into ηc(1S)\eta_c (1S) mesons is measured, for the first time, to be B(b→ηcX)=(4.88±0.64±0.25±0.67B)×10−3B ( b \rightarrow \eta_c X ) = (4.88 \pm 0.64 \pm 0.25 \pm 0.67 _{B}) \times 10^{-3}, where the third uncertainty includes also the uncertainty on the J/ψJ/\psi inclusive branching fraction from bb-hadron decays. The difference between the J/ψJ/\psi and ηc(1S)\eta_c (1S) meson masses is determined to be 114.7±1.5±0.1114.7 \pm 1.5 \pm 0.1 MeV/c2^2.The production of the ηc(1S)\eta _c (1S) state in proton-proton collisions is probed via its decay to the pp‟p\overline{p} final state with the LHCb detector, in the rapidity range 2.06.5 GeV/c2.0 6.5 \mathrm{{\,GeV/}{ c}} . The cross-section for prompt production of ηc(1S)\eta _c (1S) mesons relative to the prompt J/ψ{{ J}}/{\psi } cross-section is measured, for the first time, to be σηc(1S)/σJ/ψ=1.74 ± 0.29 ± 0.28 ± 0.18B\sigma _{\eta _c (1S)}/\sigma _{{{{ J}}/{\psi }}} = 1.74\, \pm \,0.29\, \pm \, 0.28\, \pm \,0.18 _{{\mathcal{B}}} at a centre-of-mass energy s=7 TeV{\sqrt{s}} = 7 {~\mathrm{TeV}} using data corresponding to an integrated luminosity of 0.7 fb−1^{-1} , and σηc(1S)/σJ/ψ=1.60±0.29±0.25±0.17B\sigma _{\eta _c (1S)}/\sigma _{{{{ J}}/{\psi }}} = 1.60 \pm 0.29 \pm 0.25 \pm 0.17 _{{\mathcal{B}}} at s=8 TeV{\sqrt{s}} = 8 {~\mathrm{TeV}} using 2.0 fb−1^{-1} . The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the ηc(1S)\eta _c (1S) and J/ψ{{ J}}/{\psi } decays to the pp‟p\overline{p} final state. In addition, the inclusive branching fraction of b{b} -hadron decays into ηc(1S)\eta _c (1S) mesons is measured, for the first time, to be B(b→ηcX)=(4.88 ± 0.64 ± 0.29 ± 0.67B)×10−3{\mathcal{B}}( b {\rightarrow } \eta _c X ) = (4.88\, \pm \,0.64\, \pm \,0.29\, \pm \, 0.67 _{{\mathcal{B}}}) \times 10^{-3} , where the third uncertainty includes also the uncertainty on the J/ψ{{ J}}/{\psi } inclusive branching fraction from b{b} -hadron decays. The difference between the J/ψ{{ J}}/{\psi } and ηc(1S)\eta _c (1S) meson masses is determined to be 114.7±1.5±0.1 MeV ⁣/c2114.7 \pm 1.5 \pm 0.1 {\mathrm {\,MeV\!/}c^2} .The production of the ηc(1S)\eta_c (1S) state in proton-proton collisions is probed via its decay to the ppˉp \bar{p} final state with the LHCb detector, in the rapidity range 2.06.52.0 6.5 GeV/c. The cross-section for prompt production of ηc(1S)\eta_c (1S) mesons relative to the prompt J/ψJ/\psi cross-section is measured, for the first time, to be σηc(1S)/σJ/ψ=1.74±0.29±0.28±0.18B\sigma_{\eta_c (1S)}/\sigma_{J/\psi} = 1.74 \pm 0.29 \pm 0.28 \pm 0.18 _{B} at a centre-of-mass energy s=7\sqrt{s} = 7 TeV using data corresponding to an integrated luminosity of 0.7 fb−1^{-1}, and σηc(1S)/σJ/ψ=1.60±0.29±0.25±0.17B\sigma_{\eta_c (1S)}/\sigma_{J/\psi} = 1.60 \pm 0.29 \pm 0.25 \pm 0.17 _{B} at s=8\sqrt{s} = 8 TeV using 2.0 fb−1^{-1}. The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the ηc(1S)\eta_c (1S) and J/ψJ/\psi decays to the ppˉp \bar{p} final state. In addition, the inclusive branching fraction of bb-hadron decays into ηc(1S)\eta_c (1S) mesons is measured, for the first time, to be B(b→ηcX)=(4.88±0.64±0.29±0.67B)×10−3B ( b \rightarrow \eta_c X ) = (4.88 \pm 0.64 \pm 0.29 \pm 0.67 _{B}) \times 10^{-3}, where the third uncertainty includes also the uncertainty on the J/ψJ/\psi inclusive branching fraction from bb-hadron decays. The difference between the J/ψJ/\psi and ηc(1S)\eta_c (1S) meson masses is determined to be 114.7±1.5±0.1114.7 \pm 1.5 \pm 0.1 MeV/c2^2

    Measurement of CPCP asymmetries and polarisation fractions in Bs0→K∗0Kˉ∗0B_s^0 \rightarrow K^{*0}\bar{K}{}^{*0} decays

    Get PDF
    An angular analysis of the decay Bs0→K∗0K‟∗0B_s^0 \rightarrow K^{*0}\overline{K}{}^{*0} is performed using pppp collisions corresponding to an integrated luminosity of 1.01.0 fb−1{fb}^{-1} collected by the LHCb experiment at a centre-of-mass energy s=7\sqrt{s} = 7 TeV. A combined angular and mass analysis separates six helicity amplitudes and allows the measurement of the longitudinal polarisation fraction fL=0.201±0.057(stat.)±0.040(syst.)f_L = 0.201 \pm 0.057 {(stat.)} \pm 0.040{(syst.)} for the Bs0→K∗(892)0K‟∗(892)0B_s^0 \rightarrow K^*(892)^0 \overline{K}{}^*(892)^0 decay. A large scalar contribution from the K0∗(1430)K^{*}_{0}(1430) and K0∗(800)K^{*}_{0}(800) resonances is found, allowing the determination of additional CPCP asymmetries. Triple product and direct CPCP asymmetries are determined to be compatible with the Standard Model expectations. The branching fraction B(Bs0→K∗(892)0K‟∗(892)0)\mathcal{B}(B_s^0 \rightarrow K^*(892)^0 \overline{K}^*(892)^0) is measured to be (10.8±2.1(stat.)±1.4(syst.)±0.6(fd/fs))×10−6(10.8 \pm 2.1 {(stat.)} \pm 1.4 {(syst.)} \pm 0.6 (f_d/f_s) ) \times 10^{-6}

    Search for the lepton flavour violating decay tau(-) -> mu(-)mu(+)mu(-)

    Get PDF
    A search for the lepton flavour violating decay τ−→Ό−Ό+Ό−\tau^-\rightarrow\mu^-\mu^+\mu^- is performed with the LHCb experiment. The data sample corresponds to an integrated luminosity of 1.0 fb−1^{−1} of proton-proton collisions at a centre-of-mass energy of 7 TeV and 2.0 fb−1^{−1} at 8 TeV. No evidence is found for a signal, and a limit is set at 90% confidence level on the branching fraction, B(τ−→Ό−Ό+Ό−)<4.6×10−8\mathcal{B}(\tau^-\rightarrow\mu^-\mu^+\mu^-)<4.6\times10^{−8}.A search for the lepton flavour violating decay τ−^{−} → Ό−^{−} ÎŒ+^{+} Ό−^{−} is performed with the LHCb experiment. The data sample corresponds to an integrated luminosity of 1.0 fb−1^{−1} of proton-proton collisions at a centre-of-mass energy of 7 TeV and 2.0 fb−1^{−1} at 8 TeV. No evidence is found for a signal, and a limit is set at 90% confidence level on the branching fraction, B(τ−→Ό−Ό+Ό−)<4.6×10−8 \mathrm{\mathcal{B}}\left({\tau}^{-}\to {\mu}^{-}{\mu}^{+}{\mu}^{-}\right)<4.6\times {10}^{-8} .A search for the lepton flavour violating decay τ−→Ό−Ό+Ό−\tau^-\to \mu^-\mu^+\mu^- is performed with the LHCb experiment. The data sample corresponds to an integrated luminosity of 1.0 fb−11.0\mathrm{\,fb}^{-1} of proton-proton collisions at a centre-of-mass energy of 7 TeV7\mathrm{\,Te\kern -0.1em V} and 2.0 fb−12.0\mathrm{\,fb}^{-1} at 8 TeV8\mathrm{\,Te\kern -0.1em V}. No evidence is found for a signal, and a limit is set at 90%90\% confidence level on the branching fraction, B(τ−→Ό−Ό+Ό−)<4.6×10−8\mathcal{B}(\tau^-\to \mu^-\mu^+\mu^-) < 4.6 \times 10^{-8}
    • 

    corecore