470 research outputs found

    Hydrous oceanic crust hosts megathrust creep at low shear stresses

    Get PDF
    The rheology of the metamorphosed oceanic crust may be a critical control on megathrust strength and deformation style. However, little is known about the strength and deformation style of metamorphosed basalt. Exhumed megathrust shear zones exposed on Kyushu, SW Japan, contain hydrous metabasalts deformed at temperatures between ~300° and ~500°C, spanning the inferred temperature-controlled seismic-aseismic transition. Field and microstructural observations of these shear zones, combined with quartz grain-size piezometry, indicate that metabasalts creep at shear stresses <100 MPa at ~370°C and at shear stresses <30 MPa at ~500°C. These values are much lower than those suggested by viscous flow laws for basalt. The implication is that relatively weak, hydrous, metamorphosed oceanic crust can creep at low viscosities over a wide shear zone and have a critical influence on plate interface strength and deformation style around the seismic-aseismic transition

    Production and optical properties of liquid scintillator for the JSNS2^{2} experiment

    Full text link
    The JSNS2^{2} (J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron Source) experiment will search for neutrino oscillations over a 24 m short baseline at J-PARC. The JSNS2^{2} inner detector will be filled with 17 tons of gadolinium-loaded liquid scintillator (LS) with an additional 31 tons of unloaded LS in the intermediate γ\gamma-catcher and outer veto volumes. JSNS2^{2} has chosen Linear Alkyl Benzene (LAB) as an organic solvent because of its chemical properties. The unloaded LS was produced at a refurbished facility, originally used for scintillator production by the RENO experiment. JSNS2^{2} plans to use ISO tanks for the storage and transportation of the LS. In this paper, we describe the LS production, and present measurements of its optical properties and long term stability. Our measurements show that storing the LS in ISO tanks does not result in degradation of its optical properties.Comment: 7 pages, 4 figures

    The thickness of subduction plate boundary faults from the seafloor into the seismogenic zone

    Get PDF
    The thickness of an active plate boundary fault is an important parameter for understanding the strength and spatial heterogeneity of fault behavior. We have compiled direct measurements of the thickness of subduction thrust faults from active and ancient examples observed by ocean drilling and fi eld studies in accretionary wedges. We describe a general geometric model for subduction thrust décollements, which includes multiple simultaneously active, anastomosing fault strands tens of meters thick. The total thickness encompassing all simultaneously active strands increases to ~100–350 m at ~1–2 km below seafl oor, and this thickness is maintained down to a depth of ~15 km. Thin sharp faults representing earthquake slip surfaces or other discrete slip events are found within and along the edges of the tens-ofmeters- thick fault strands. Although fl attening, primary inherited chaotic fabrics, and fault migration through subducting sediments or the frontal prism may build mélange sections that are much thicker (to several kilometers), this thickness does not describe the active fault at any depth. These observations suggest that models should treat the subduction thrust plate boundary fault as <1–20 cm thick during earthquakes, with a concentration of postseismic and interseismic creep in single to several strands 5–35 m thick, with lesser distributed interseismic deformation in stratally disrupted rocks surrounding the fault strands

    Embrittlement within viscous shear zones across the base of the subduction thrust seismogenic zone

    Get PDF
    Geophysical observations indicate that patches of localised fracturing occur within otherwise viscous regions of subduction plate boundaries. These observations place uncertainty on the possible down-dip extent of the seismogenic zone, and as a result the maximum magnitude of subduction thrust earthquakes. However, the processes controlling where and how localised fracturing occurs within otherwise viscous shear zones are unclear. We examined three exposures of exhumed plate boundary on Kyushu, Japan, which contain subducted sediments and hydrated oceanic crust deformed at ∼300 to ∼500 °C. These exposures preserve subduction-related viscous deformation, which in two of the studied exposures has a mutually overprinting relationship with quartz veins, indicating localised cyclical embrittlement. Where observed, fractures are commonly near lithological contacts that form viscosity contrasts. Mineral equilibrium calculations for a metabasalt composition indicate that exposures showing cyclical embrittlement deformed at pressure-temperature conditions near dehydration reactions that consume prehnite and chlorite. In contrast, dominantly viscous deformation occurred at intervening pressure-temperature conditions. We infer that at conditions close to metamorphic dehydration reactions, only small stress perturbations are required for transient embrittlement, driven by localised dehydration reactions reducing effective stress, and/or locally increased shear stresses along rheological contrasts. Our results show that the protolith composition of the subducting oceanic lithosphere controls the locations and magnitudes of dehydration reactions, and the viscosity of metamorphosed oceanic crust. Therefore, compositional variations might drive substantial variations in slip style

    Structure and lithology of the Japan Trench subduction plate boundary fault

    Get PDF
    The 2011 Mw9.0 Tohoku-oki earthquake ruptured to the trench with maximum coseismic slip located on the shallow portion of the plate boundary fault. To investigate the conditions and physical processes that promoted slip to the trench, Integrated Ocean Drilling Program Expedition 343/343T sailed 1 year after the earthquake and drilled into the plate boundary ∼7 km landward of the trench, in the region of maximum slip. Core analyses show that the plate boundary décollement is localized onto an interval of smectite-rich, pelagic clay. Subsidiary structures are present in both the upper and lower plates, which define a fault zone ∼5–15m thick. Fault rocks recovered from within the clay-rich interval contain a pervasive scaly fabric defined by anastomosing, polished, and lineated surfaces with two predominant orientations. The scaly fabric is crosscut in several places by discrete contacts across which the scaly fabric is truncated and rotated, or different rocks are juxtaposed. These contacts are inferred to be faults. The plate boundary décollement therefore contains structures resulting from both distributed and localized deformation. We infer that the formation of both of these types of structures is controlled by the frictional properties of the clay: the distributed scaly fabric formed at low strain rates associated with velocity-strengthening frictional behavior, and the localized faults formed at high strain rates characterized by velocity-weakening behavior. The presence of multiple discrete faults resulting from seismic slip within the décollement suggests that rupture to the trench may be characteristic of this margin

    Spectrum of slip behaviour in Tohoku fault zone samples at plate tectonic slip rates

    Get PDF
    During the 2011 Tohoku-oki earthquake, extremely extensive coseismic slip ruptured shallow parts of the Japan Trench subduction zone and breached the sea floor1, 2. This part of the subduction zone also hosts slow slip events (SSE)3, 4. The fault thus seems to have a propensity for slip instability or quasi-instability that is unexpected on the shallow portions of important fault zones. Here we use laboratory experiments to slowly shear samples of rock recovered from the Tohoku-oki earthquake fault zone as part of the Japan Trench Fast Drilling Project. We find that infrequent perturbations in rock strength appear spontaneously as long-term SSE when the samples are sheared at a constant rate of about 8.5 cm yr−1, equivalent to the plate-convergence rate. The shear strength of the rock drops by 3 to 6%, or 50 kPa to 120 kPa, over about 2 to 4 h. Slip during these events reaches peak velocities of up to 25 cm yr−1, similar to SSE observed in several circum-Pacific subduction zones. Furthermore, the sheared samples exhibit the full spectrum of fault-slip behaviours, from fast unstable slip to slow steady creep, which can explain the wide range of slip styles observed in the Japan Trench. We suggest that the occurrence of SSE at shallow depths may help identify fault segments that are frictionally unstable and susceptible to large coseismic slip propagation

    The effect of aneurysm geometry on the intra-aneurysmal flow condition

    Get PDF
    Various anatomical parameters affect on intra-aneurysmal hemodynamics. Nevertheless, how the shapes of real patient aneurysms affect on their intra-aneurysmal hemodynamics remains unanswered. Quantitative computational fluid dynamics simulation was conducted using eight patients’ angiograms of internal carotid artery–ophthalmic artery aneurysms. The mean size of the intracranial aneurysms was 11.5 mm (range 5.8 to 19.9 mm). Intra-aneurysmal blood flow velocity and wall shear stress (WSS) were collected from three measurement planes in each aneurysm dome. The correlation coefficients (r) were obtained between hemodynamic values (flow velocity and WSS) and the following anatomical parameters: averaged dimension of aneurysm dome, the largest aneurysm dome dimension, aspect ratio, and dome–neck ratio. Negative linear correlations were observed between the averaged dimension of aneurysm dome and intra-aneurysmal flow velocity (r = −0.735) and also WSS (r = −0.736). The largest dome diameter showed a negative correlation with intra-aneurysmal flow velocity (r = −0.731) and WSS (r = −0.496). The aspect ratio demonstrated a weak negative correlation with the intra-aneurysmal flow velocity (r = −0.381) and WSS (r = −0.501). A clear negative correlation was seen between the intra-aneurysmal flow velocity and the dome–neck ratio (r = −0.708). A weak negative correlation is observed between the intra-aneurysmal WSS and the dome–neck ratio (r = −0.392). The aneurysm dome size showed a negative linear correlation with intra-aneurysmal flow velocity and WSS. Wide-necked aneurysm geometry was associated with faster intra-aneurysmal flow velocity

    The relevance of complement in pemphigoid diseases: A critical appraisal

    Get PDF
    Pemphigoid diseases are autoimmune chronic inflammatory skin diseases, which are characterized by blistering of the skin and/or mucous membranes, and circulating and tissue-bound autoantibodies. The well-established pathomechanisms comprise autoantibodies targeting various structural proteins located at the dermal-epidermal junction, leading to complement factor binding and activation. Several effector cells are thus attracted and activated, which in turn inflict characteristic tissue damage and subepidermal blistering. Moreover, the detection of linear complement deposits in the skin is a diagnostic hallmark of all pemphigoid diseases. However, recent studies showed that blistering might also occur independently of complement. This review reassesses the importance of complement in pemphigoid diseases based on current research by contrasting and contextualizing data from in vitro, murine and human studies
    corecore