

Chemical composition dependences of the acoustical physical constants of LiNbO3 and LiTaO3 single crystals

著者	櫛引淳一
journal or	Journal of applied physics
publication title	
volume	91
number	10
page range	6341-6349
year	2002
URL	http://hdl.handle.net/10097/35501

doi: 10.1063/1.1467608

Chemical composition dependences of the acoustical physical constants of LiNbO₃ and LiTaO₃ single crystals

J. Kushibiki,^{a)} I. Takanaga, S. Komatsuzaki, and T. Ujiie Department of Electrical Engineering, Tohoku University, Sendai 980-8579, Japan

(Received 4 September 2001; accepted for publication 13 February 2002)

We determined all the independent components of the acoustical physical constants (elastic constant, piezoelectric constant, dielectric constant, and density) of LiNbO₃ and LiTaO₃ crystals grown from the melts of three different starting materials with the Li₂O contents set to 48.0, 48.5, and 49.0 mol %, and obtained the chemical composition dependences of the constants of each single crystal around the congruent composition. All the constants as well as the measured longitudinal, shear, and leaky surface acoustic wave (LSAW) velocities varied linearly with the composition ratios in the experimental range. The composition dependences of the LSAW velocities for the 128° *YX*-LiNbO₃, *X*-112° *Y*-LiTaO₃, and 36° *YX*-LiTaO₃ substrates, previously obtained by line-focus-beam acoustic microscopy, were well matched with the calculated ones using the constants enable us to easily prepare the calibration lines for evaluating the crystals for any arbitrarily cut specimen surfaces, wave propagation directions, and modes by numerical calculations. © 2002 American Institute of Physics. [DOI: 10.1063/1.1467608]

I. INTRODUCTION

LiNbO₃ (Refs. 1 and 2) and LiTaO₃ (Refs. 1, 3, and 4) single crystals are widely used as material for bulk acoustic wave (BAW) devices and surface acoustic wave (SAW) devices. The rapid development of mobile communication devices in recent years has increased the demand for even higher quality single crystals. The chemical composition differences and variations in crystals most influence the quality of single-crystal wafer substrates, particularly the uniformity of their physical and chemical characteristics.^{2–4} It is thus important to produce crystal wafer substrates for SAW devices having highly uniform acoustic properties in order to improve the device yield rate. Therefore it is necessary to evaluate the variations in acoustic properties caused by the variations in chemical composition and to feed that information back to the crystal growth conditions.

Ultrasonic micro-spectroscopy (UMS) technology enables accurate analysis and evaluation of the acoustic properties of various materials using the line-focus-beam (LFB) acoustic microscopy system^{5,6} and the bulk ultrasonic spectroscopy system.^{7,8} This technology has been applied to various materials, including LiNbO₃ and LiTaO₃ single crystals, and its usefulness has been demonstrated.^{9–12} The acoustical physical constants of materials (elastic constant c^E , piezoelectric constant *e*, dielectric constant ε^S , and density ρ) of commercially available SAW-grade LiNbO₃ and LiTaO₃ single crystals, which have a nearly congruent chemical composition, have also been accurately measured recently, giving BAW and SAW velocities with four significant figures.¹³

To evaluate and analyze $LiNbO_3$ and $LiTaO_3$ single crystals using UMS technology, we must prepare calibration

lines of the acoustic properties to be measured against the chemical composition to be evaluated. For example, when implementing an evaluation with the leaky surface acoustic wave (LSAW) velocities measured by an LFB system, we must obtain the relationship between the chemical compositions and LSAW velocities by preparing several substrate specimens with different chemical compositions for a required cut surface and then measuring the LSAW velocities on each specimen. It is very time-consuming. Chemical compositions of 127.86° rotated Y-cut X-propagating $(128^{\circ}YX)$ -LiNbO₃ (Ref. 14), X-cut 112.2° rotated Y-propagating $(X-112^{\circ}Y)$ -LiTaO₃ (Ref. 15), and 36° YX-LiTaO₃ (Ref. 16) substrates have been so far evaluated according to such experimental procedures.^{11,17,18} In addition, we are unable to directly evaluate the SAW velocities, which are closely related to the characteristics of the SAW devices, and, in particular, the pseudo surface acoustic wave (PSAW) velocities of SH type, since LFB acoustic microscopy enables measuring only the Rayleigh propagation mode on the water-loaded specimen surfaces from its principle of operation.

If we could have all independent components of the acoustical physical constants of these crystals as a function of the chemical composition ratio, we could obtain chemical composition dependences of the acoustic properties for an arbitrarily cut specimen surface, wave propagation direction, and mode by numerical calculations, enabling a very efficient evaluation. Furthermore, the calculated relationships between LSAW velocities and SAW velocities can be easily obtained. We could then evaluate SAW velocities from measured LSAW velocities. However, the previously published values of the acoustical physical constants of LiNbO₃ and LiTaO₃ single crystals were determined only for a nearly congruent chemical composition;^{13,19–21} there are no reports

0021-8979/2002/91(10)/6341/9/\$19.00

6341

^{a)}Electronic mail: kushi@ecei.tohoku.ac.jp

concerning the chemical composition dependences of the constants.

In this article we determine the chemical composition dependences of the constants for $LiNbO_3$ and $LiTaO_3$ crystals around the congruent composition.

II. DETERMINATION PROCEDURE

LiNbO₃ and LiTaO₃ single crystals belong to class 3m of the trigonal system and have a total of 13 independent acoustical physical constants, which consist of six elastic stiffness constants at constant electric field $[c_{11}^{E}(=c_{12}^{E}+2c_{66}^{E}), c_{12}^{E}, c_{13}^{E}, c_{14}^{E}, c_{33}^{E}, and c_{44}^{E}]$, four piezoelectric stress constants $(e_{15}, e_{22}, e_{31}, and e_{33})$, two dielectric constants at constant strain $(\varepsilon_{11}^{S} and \varepsilon_{33}^{S})$, and the density (ρ) . Of these, the two dielectric constants and density must be measured independently when considering the relationship between acoustic velocities and acoustical physical constants. Therefore the six elastic stiffness constants and four piezoelectric constants can be determined from ten measured velocities.

In our procedure of determining the acoustical physical constants, some of the constants are determined in advance using velocities of bulk acoustic waves, whose relation to the acoustical physical constants is relatively simple, so that more accurate determination can be made in combination with LSAW velocities measured by the LFB system.²²

The constants c_{11}^E , c_{44}^E , and c_{66}^E can be determined independently from the measured density and three velocities, viz., the X-axis longitudinal velocity V_{Xl} , the Z-axis shear velocity V_{Zs} , and the Y-axis shear velocity with X-axis polarized particle displacement V_{YsX} for the bulk acoustic waves propagating along the crystallographic X, Y, and Z axes, as being expressed in the following equations:

$$\rho V_{Xl}^2 = c_{11}^E, \tag{1}$$

$$\rho V_{Zs}^2 = c_{44}^E, \text{ and} \tag{2}$$

$$\rho V_{Y_{SX}}^2 = c_{66}^E = (c_{11}^E - c_{12}^E)/2.$$
(3)

And the constant c_{14}^E can be determined from the determined c_{44}^E and c_{66}^E and the rotated *Y*-axis shear velocity with *X*-axis polarized particle displacement V_{rYsX} , measured for a rotated *Y*-cut plate specimen as expressed by

$$\rho V_{rYsX}^2 = c_{14}^E \sin 2\theta + c_{44}^E \sin^2 \theta + c_{66}^E \cos^2 \theta, \qquad (4)$$

where θ is the rotation angle about the *X* axis from the *Y* axis to the *Z* axis. For this procedure, to determine c_{14}^E with high accuracy, we must select a rotated *Y*-cut plate specimen that shows the largest c_{14}^E dependence on the velocity change in V_{rYsX} .¹³

Furthermore, the rotated *Y*-axis longitudinal velocities V_{rYl} for rotated *Y*-cut plates including the *Y*- and *Z*-cut plates are related to the acoustical physical constants in the following equation:

$$\begin{vmatrix} c_{11}^{E'} - \rho V_{rYl}^2 & c_{16}^{E'} & e_{11}' \\ c_{16}^{E'} & c_{66}^{E'} - \rho V_{rYl}^2 & e_{16}' \\ e_{11}' & e_{16}' & -\varepsilon_{11}^S \end{vmatrix} = 0.$$
(5)

The primed constants indicate that the constants have been subjected to coordinate transformation for the desired propagation direction. The constants $c_{11}^{E'}$, $c_{16}^{E'}$, and $c_{66}^{E'}$ are all functions of the five elastic constants other than c_{12}^{E} , and the rotation angle θ for the rotated *Y*-cut specimen. Both e'_{11} and e'_{16} are functions of the four piezoelectric constants and θ , and $\varepsilon_{11}^{S'}$ is a function of the two dielectric constants and θ .

Also, we employ LSAW velocities for the three rotated *Y*-cut plate specimens used for the longitudinal velocity measurements. As a proper propagation direction for accurate measurements of LSAW velocities, we take LSAWs of a pure Rayleigh mode propagating in the 90°*X*-axis direction on the rotated *Y*-cut specimen. The relation between the LSAW velocity V_{LSAW} measured for the rotated *Y*-cut 90°*X*-propagating specimen and the acoustical physical constants are represented as

$$\begin{vmatrix} c_{11}^{E'} + 2j\beta c_{15}^{E'} - \beta^2 c_{55}^{E'} - \rho V_{\text{LSAW}}^{*2} & c_{15}^{E'} + j\beta (c_{13}^{E'} + c_{55}^{E'}) - \beta^2 c_{35}^{E'} & e_{11}^{\prime} + j\beta (e_{31}^{\prime} + e_{15}^{\prime}) - \beta^2 e_{35}^{\prime} \\ c_{15}^{E'} + j\beta (c_{13}^{E'} + c_{55}^{E'}) - \beta^2 c_{35}^{E'} & c_{55}^{E'} + 2j\beta c_{35}^{E'} - \beta^2 c_{33}^{E'} - \rho V_{\text{LSAW}}^{*2} & e_{15}^{\prime} + j\beta (e_{13}^{\prime} + e_{35}^{\prime}) - \beta^2 e_{33}^{\prime} \\ e_{11}^{\prime} + j\beta (e_{31}^{\prime} + e_{15}^{\prime}) - \beta^2 e_{35}^{\prime} & e_{15}^{\prime} + j\beta (e_{13}^{\prime} + e_{35}^{\prime}) - \beta^2 e_{33}^{\prime} - \rho V_{\text{LSAW}}^{*2} & e_{15}^{\prime} + 2j\beta \varepsilon_{13}^{S'} - \beta^2 \varepsilon_{33}^{S'} \end{vmatrix} = 0.$$

$$(6)$$

In this equation, $V_{\rm LSAW}^*$ is the complex velocity and β is the component of the wave number in the depth direction of the substrate normalized by the wave number of the surface waves in the propagation direction, satisfying the boundary conditions at the interface between the water and the specimen surface.²³ The constants $c_{11}^{E'}$, $c_{13}^{E'}$, $c_{15}^{E'}$, $c_{33}^{E'}$, $c_{35}^{E'}$, and $c_{55}^{E'}$ are all functions of the five elastic constants other than c_{12}^{E} , and the rotation angles θ for the rotated *Y*-cut specimens; e_{11}' , e_{13}' , e_{15}' , e_{31}' , e_{35}' , are functions of the

four piezoelectric constants and θ ; and $\varepsilon_{11}^{S'}$, $\varepsilon_{13}^{S'}$, and $\varepsilon_{33}^{S'}$ are functions of the two dielectric constants and θ .

Therefore the six constants, c_{13}^E , c_{33}^E , e_{15} , e_{22} , e_{31} , and e_{33} , are determined by selecting six combinations of propagation directions and wave modes that satisfy Eq. (5) or Eq. (6) and solving the simultaneous equations.

Following the procedure described above, all the acoustical physical constants can be determined from ten measured velocities: the longitudinal velocities for all four specimens; and the *X*-axis polarized shear velocities and the

TABLE I. Measured Curie temperatures and estimated Li_2O concentrations of LiNbO₃ and LiTaO₃ crystals used in experiments.

	Prepared Li ₂ O concentration (mol %)	Curie temperature (°C)	Analyzed Li ₂ O concentration (mol %)
LiNbO ₃	48.0	1124.1	48.28
	48.5	1130.0	48.41
	49.0	1136.2	48.55
LiTaO3	48.0	595.8	48.35
	48.5	601.8	48.50
	49.0	607.7	48.66

 $90^{\circ}X$ -axis propagating LSAW velocities for the *Y*-cut, *Z*-cut, and rotated *Y*-cut specimens.²²

III. PREPARATION OF SPECIMENS

We prepared three crystal ingots each for LiNbO₃ and LiTaO₃ grown from melts of starting materials with Li₂O content set to 48.0, 48.5, and 49.0 mol %. Three-inch diameter crystals were grown by the Czochralski method (Yamaju Ceramics Co., Ltd., Seto, Japan). The LiNbO₃ crystals were pulled along the Z-axis direction; the LiTaO₃ crystals along the Y-axis direction.

The chemical composition was determined from the Curie temperatures^{24,25} measured by the differential thermal analysis (DTA) method for specimens cut near the central portion of the growing axis of each crystal. The results are listed in Table I. Assuming that the measurement accuracy of the Curie temperatures was 1 °C, the corresponding variation in chemical composition ratio was estimated to be 0.02 Li_2O mol % for the LiNbO₃ crystals and 0.03 Li_2O mol % for the LiTaO₃ crystals.

Figure 1 shows the configuration of specimen preparation for each of the LiNbO₃ and LiTaO₃ crystals used for determining the constants. Each specimen was prepared so that the center of the specimen, corresponding to the velocity measurement position, was contained in the circular disk plane perpendicular to the crystal growth axis. This preparation method effectively reduces differences in chemical composition at velocity measurement positions among the specimens prepared from the same crystal, as single crystals grown from melts with noncongruent compositions have gradients in chemical composition along the growth axis direction but are almost uniform along the diameter direction.¹⁰ Three principal *X*-, *Y*-, and *Z*-cut specimens and a rotated *Y*-cut specimen were prepared from each crystal boule based on the literature.²² The (104) [127.85° rotated *Y* (128° *Y*)-cut] plate for the LiNbO₃ crystals and the (012) [32.93° rotated *Y* (33° *Y*)-cut] plate for the LiTaO₃ crystals were selected from the crystalline planes cited in the American Society for Testing and Materials (ASTM) cards (No. 20-631 for LiNbO₃ and No. 29-836 for LiTaO₃) that could be used for most accurately determining the constants.

Every specimen was optically polished on both sides to a thickness of 3 to 4 mm to eliminate influences from the waves reflected from the back surface of the specimen during the measurement of LSAW velocities by LFB acoustic microscopy 26 and so that bulk velocities could be measured using the pulse measurement method. The inclination angles between the crystalline planes and the specimen surfaces were measured on all the specimens and were found to be 0.1° maximum by X-ray analysis. Any change in velocity caused by such inclination can be compensated through numerical calculations.

IV. MEASURING METHODS

A. BAW velocity

We measured BAW velocities by the ultrasonic pulse interference method using radio frequency (rf) tone burst signals.⁸ Figure 2 shows the setup for the experiment to measure the BAW velocities. Two plane-wave ultrasonic devices were used, consisting of a cylindrical buffer rod of synthetic silica (SiO₂) glass with a ZnO film transducer for longitudinal waves or an X-cut LiNbO₃ transducer for shear waves fabricated on one end of the rod. Pure water was used as the coupling material for the longitudinal waves, and the rod and specimen were bonded using salol (phenyl salicylate) for the shear waves. Ultrasonic waves converted from electrical rf pulse signals by the transducer propagate through the rod, coupling material, and specimen, and are then transmitted across or reflected at the boundaries. The interference wave form shown in Fig. 3 can be obtained by superposing the pulse signals reflected from the front surface of the specimen, V1, and those reflected from the back surface, V2, in the time domain using the double-pulse method and by sweeping the carrier frequency. The BAW velocity V is determined from the frequency interval in the interference wave form, Δf , and the thickness of the specimen, h, using the following equation:

FIG. 1. Configurations of specimen preparation of LiNbO₃ and LiTaO₃ crystals. (a) LiNbO₃ and (b) LiTaO₃.

Downloaded 05 Nov 2008 to 130.34.135.83. Redistribution subject to ASCE license or copyright; see http://jap.aip.org/jap/copyright.jsp

FIG. 2. Experimental arrangement for bulk ultrasonic velocity measurements by the pulse interference method.

$$V = 2\Delta fh. \tag{7}$$

The specimen thickness was measured with an accuracy of $\pm 0.10 \ \mu m$ using a digital length gauging system. In measuring the shear wave velocities, the signals reflected from the rod end and those reflected from the front surface of the specimen cannot be separated in the time domain. The influence of the phase change in the bonding layer on the acoustic velocity is therefore compensated through numerical calculations. The accuracy is ± 0.3 m/s for the longitudinal and shear velocities.

B. LSAW velocity

LSAW velocities are measured by the most recent LFB ultrasonic material characterization (UMC) system.⁶ The LFB-UMC system enables us to measure the phase velocity of LSAWs propagating on the water-loaded specimen surface by analyzing V(z) curves obtained when varying the relative distance z between the LFB ultrasonic device and the specimen,⁵ as illustrated in Fig. 4, which represents the principle of forming the V(z) curve. The ultrasonic device con-

FIG. 3. Frequency characteristics of interference output for a Y-cut LiNbO₃ specimen in longitudinal wave velocity measurement by the pulse interference method. Melt composition: 48.5 Li₂O mol%. Specimen thickness: 2998.0 μ m.

FIG. 4. Cross section of the experimental setup of the LFB ultrasonic device and specimen system for V(z) curve measurements.

sists of a Z-cut sapphire rod with a ZnO piezoelectric film transducer on the top face and a cylindrical acoustic lens on the bottom face. Components No. 0 and No. 1 in the figure interfere with each other when the relative distance z is varied. An interference wave form of the V(z) curve is then obtained, as shown in Fig. 5. The LSAW velocity $V_{\rm LSAW}$ can be obtained from the oscillation interval Δz in the interference wave form using the following equation:

$$V_{\rm LSAW} = \frac{V_W}{\sqrt{1 - \left(1 - \frac{V_W}{2f\Delta z}\right)^2}}.$$
(8)

Here, V_W is the longitudinal velocity in water and f is the ultrasonic frequency. There is a problem with the absolute value of the LSAW velocity that LSAW velocities measured for one specimen may vary depending upon the systems and ultrasonic devices used for measurements. Therefore the system was calibrated by using standard specimens of a LiNbO₃ or LiTaO₃ crystal,¹³ for which the acoustical physical constants were accurately measured with an accuracy of ± 0.8 m/s.²⁷

FIG. 5. V(z) curve obtained for a $128^{\circ}Y$ X-LiNbO₃ specimen. Melt composition: 48.5 Li₂O mol %.

C. Dielectric constant

The dielectric constant is obtained by measuring the capacitance of a plate specimen with full electrodes prepared by depositing metal films on both sides of the specimen. If we set the measuring frequency to a value that is sufficiently lower than the lowest resonance frequency, we can accurately measure the dielectric constant at constant stress (ε^{T}) and then obtain the dielectric constant at constant strain (ε^{S}) by calculations using the following equation:²⁸

$$\boldsymbol{\varepsilon}_{ij}^{S} = \boldsymbol{\varepsilon}_{ij}^{T} - \boldsymbol{e}_{ip} \boldsymbol{s}_{pq}^{E} \boldsymbol{e}_{qj} \,. \tag{9}$$

Here, s^E is the elastic compliance constant and is expressed by $s^E = (c^E)^{-1}$. ε_{11}^T can be measured using an *X*-cut or *Y*-cut specimen, and ε_{33}^T by using a *Z*-cut specimen for LiNbO₃ and LiTaO₃ single crystals. The accuracy is estimated to be around $\pm 1\%$.

D. Density

The density is obtained by measuring the weight in air and in water and using the Archimedes method.²⁹ The accuracy is $\pm 0.005\%$.

V. RESULTS

The velocities, dielectric constants, and density of each specimen were measured around a temperature of 23.0 °C. The measured results of the *X*-axis polarized shear velocities for LiNbO₃ and LiTaO₃ crystals are shown in Figs. 6 and 7 as a function of the Li₂O content, given in Table I. Circles in the figure represent the measured results of three specimens with different compositions, and the solid line represents the straight line fitted by the least-squares method. For the LiNbO₃ crystals, the measured values of the *Y*-cut specimens increase linearly as the Li₂O content increases, while the values measured for the *Z*-cut and $128^{\circ}Y$ -cut specimens decrease linearly. In contrast, for the LiTaO₃ crystals, the measured values of all specimens increase linearly as the Li₂O content increases.

The velocities, dielectric constants at constant stress, and densities measured for each of the three LiNbO₃ and LiTaO₃ crystals, and the gradients of each measured parameter against the Li₂O content, are shown in Tables II and III, including the data of the shear velocities presented in Figs. 6 and 7. In Table II (LiNbO₃), the longitudinal velocities have positive gradients for all specimens, while the measured LSAW velocities for the Y-cut specimens decrease linearly and those for the Z-cut and 128°Y-cut specimens increase linearly. In Table III (LiTaO₃), both the longitudinal and LSAW velocities have positive gradients for all specimens. The increasing and decreasing rates of the longitudinal, shear, and LSAW velocities vary depending upon the crystal and/or specimen surface. For both the LiNbO3 and LiTaO3 crystals, ε_{11}^{T} increases linearly as the Li₂O content increases, while ε_{33}^T decreases linearly. Also, the densities decrease linearly with the Li₂O content for both the crystals. This is due to the greater molar weights of Nb₂O₅ and Ta₂O₅ than that of Li₂O.

Next, we determined all the independent components of the acoustical physical constants according to the procedure

FIG. 6. Chemical composition dependences of X-axis polarized shear velocities of LiNbO₃ specimens.

described in Sec. II using the measured results of the velocities, dielectric constants, and density of each type of crystal. Just as each measured parameter varied linearly with the chemical composition, all the acoustical physical constants also varied linearly. The constants determined for the three LiNbO₃ crystals and the gradients in the dependence of each constant on the Li₂O content are presented in Table IV, and those for the three LiTaO₃ crystals, in Table V. From both tables, we can see that only two components, c_{14}^E and e_{31} , for LiTaO₃ have negative values. In Table IV (LiNbO₃), c_{44}^E , represented in Eq. (2), has a negative gradient, corresponding to the fact that both the shear velocity and the density decrease as the Li₂O content increases. For the piezoelectric constants, e_{31} and e_{33} have negative gradients. In contrast, in Table V (LiTaO₃), all the elastic and piezoelectric constants except for e_{33} have positive gradients.

VI. DISCUSSION

We calculated the chemical composition dependences of LSAW velocities using the constants in Tables IV and V for $128^{\circ}YX$ -LiNbO₃ and X- $112^{\circ}Y$ -LiTaO₃, which are widely used as substrates for Rayleigh-type SAW devices, and for $36^{\circ}YX$ -LiTaO₃ for SH-type SAW devices. The calculated results are shown by circles in Fig. 8. The solid line in the

FIG. 7. Chemical composition dependences of X-axis polarized shear velocities of LiTaO₃ specimens.

figure represents the straight line fitted by the least-squares method for the three calculated results. As stated earlier, we previously obtained the experimental relations between the LSAW velocities and the chemical composition ratios.^{11,17,18} The experimental data are shown in Table VI, together with

the calculated results using the constants determined here. The measured and calculated values agree well within an error of about 1% for the LiNbO₃ substrates and about 10% for the LiTaO₃ substrates. This better agreement for the LiNbO₃ substrates than for the LiTaO₃ substrates may be due to the fact that the measured values for LiNbO3 were obtained over a wider range of chemical compositions (47-50 Li₂O mol % in the starting material).¹⁷ When considering the estimation error in chemical composition due to the measurement error in Curie temperature for both types of crystals, the measured values are in good agreement with the calculated values. These results indicate that the chemical composition dependences of velocities for any arbitrarily cut specimen surfaces, wave propagation directions, and modes can be obtained easily by numerical calculations using the determined constants and that these crystals can be evaluated efficiently and a feedback to the crystal growth conditions can be implemented efficiently.

Furthermore, the relationship of velocities in different modes, particularly the relationship between the LSAW velocities and SAW velocities or PSAW velocities of SH-type SAWs, can be obtained easily. Figure 9 shows the relationship between the LSAW velocities and PSAW velocities for $36^{\circ}YX$ -LiTaO₃, obtained by numerical calculations. It was previously impossible to evaluate SAW or PSAW velocities, which are related to the characteristics of the devices, directly from LSAW velocities measured by LFB acoustic microscopy. However, obtaining the calculated relationship between these two characteristics now enables us to evaluate the SAW or PSAW velocities from the measured values of the LSAW velocities.

VII. CONCLUSIONS

In this article we determined all the independent components of the acoustical physical constants of $LiNbO_3$ and $LiTaO_3$ single crystals grown from the melts of three different starting materials with the Li_2O content set to 48.0, 48.5, and 49.0 mol%. We subsequently obtained the chemical composition dependences of the constants of each crystal.

TABLE II. Chemical composition dependences of measured acoustic properties of LiNbO3 crystals.

		48.28 Li ₂ O mol %	48.41 Li ₂ O mol %	48.55 Li ₂ O mol %	Gradient (/mol %)
Longitudinal	X cut	6536.7	6543.7	6550.0	48.9
velocity (m/s)	Y cut	6795.2	6805.1	6813.7	68.5
	Z cut	7322.2	7327.2	7332.0	36.3
	$128^{\circ}Y$ cut	7149.7	7157.8	7165.0	56.5
Shear velocity	Y cut	3938.8	3940.4	3941.8	11.0
(m/s)	Z cut	3593.2	3590.0	3587.3	-21.9
	$128^{\circ}Y$ cut	3508.5	3500.8	3493.7	-54.6
LSAW velocity	Y cut	3445.6	3444.8	3443.9	-6.2
(m/s)	Z cut	3868.8	3875.3	3881.3	46.1
	$128^{\circ}Y$ cut	3658.5	3662.1	3665.2	24.9
Dielectric	$\boldsymbol{\varepsilon}_{11}^T / \boldsymbol{\varepsilon}_0$	82.9	83.6	84.2	4.72
constant	$\boldsymbol{\varepsilon}_{33}^{T}/\boldsymbol{\varepsilon}_{0}$	28.6	28.4	28.2	-1.51
Density (kg/m ³)	ρ	4643.5	4642.8	4641.7	-6.94

Downloaded 05 Nov 2008 to 130.34.135.83. Redistribution subject to ASCE license or copyright; see http://jap.aip.org/jap/copyright.jsp

TABLE III. Chemical composition dependences of measured acoustic properties of LiTaO3 crystals.

		48.35 Li ₂ O mol %	48.50 Li ₂ O mol %	48.66 Li ₂ O mol %	Gradient (/mol %)
Longitudinal	X cut	5583.1	5588.4	5593.4	33.7
velocity (m/s)	Y cut	5738.9	5745.2	5752.6	44.6
	Z cut	6169.3	6174.5	6179.3	32.8
	$33^{\circ}Y$ cut	6324.2	6333.3	6339.8	50.9
Shear velocity	Y cut	3534.1	3536.0	3538.9	15.4
(m/s)	$Z \operatorname{cut}$	3570.2	3571.0	3572.9	8.8
	$33^{\circ}Y$ cut	3353.9	3358.4	3362.4	27.6
LSAW velocity	Y cut	3229.3	3232.0	3234.5	17.1
(m/s)	$Z \operatorname{cut}$	3314.3	3318.8	3322.8	28.0
	$33^{\circ}Y$ cut	3133.7	3137.7	3141.0	23.8
Dielectric	$\varepsilon_{11}^T/\varepsilon_0$	52.6	52.8	53.0	1.13
constant	$\varepsilon_{33}^{\hat{T}}/\varepsilon_0$	43.7	43.4	43.1	-2.00
Density (kg/m ³)	ρ	7463.4	7460.6	7457.9	-18.26

TABLE IV. Chemical composition dependences of acoustical physical constants of LiNbO3 crystals.

		48.28 Li ₂ O mol %	48.41 Li ₂ O mol %	48.55 Li ₂ O mol %	Gradient (/mol %)
Elastic constant	c_{11}^{E}	1.9844	1.9883	1.9916	0.027
$(\times 10^{11} \text{ N/m}^2)$	c_{12}^{E}	0.5433	0.5463	0.5489	0.021
	$c_{13}^{\tilde{E}}$	0.6794	0.6811	0.6820	0.010
	c_{14}^{E}	0.0758	0.0779	0.0799	0.015
	c_{33}^{E}	2.3382	2.3431	2.3459	0.028
	c_{44}^{E}	0.5996	0.5984	0.5973	-0.008
Piezoelectric	e ₁₅	3.631	3.659	3.682	0.191
constant (C/m ²)	e 22	2.394	2.408	2.419	0.093
	e ₃₁	0.332	0.328	0.320	-0.045
	e 33	1.896	1.878	1.870	-0.094
Dielectric	$\boldsymbol{\varepsilon}_{11}^S/\boldsymbol{\varepsilon}_0$	45.1	45.1	45.0	-0.26
constant	$\varepsilon_{33}^s/\varepsilon_0$	26.8	26.6	26.5	-1.33
Density (kg/m ³)	ρ	4643.5	4642.8	4641.7	-6.94

TABLE V. Chemical composition dependences of acoustical physical constants of $LiTaO_3$ crystals.

		48.35 Li ₂ O mol %	48.50 Li ₂ O mol %	48.66 Li ₂ O mol %	Gradient (/mol %)
Elastic constant $(\times 10^{11} \text{ N/m}^2)$	c_{11}^E c_{12}^E	2.3264 0.4620	2.3300 0.4643	2.3333 0.4653	0.022 0.011
(, , , , , , , , , , , , , , , , , , ,	$c_{13}^{E} \\ c_{13}^{E} \\ c_{14}^{E} \\ c_{33}^{E} \\ c_{E}^{E} \\ $	0.8356 -0.1077 2.7530 0.9513	0.8341 -0.1061 2.7574 0.9514	0.8358 -0.1054 2.7614 0.9521	0.000 0.008 0.027 0.002
Piezoelectric constant (C/m ²)	e_{15} e_{22} e_{31}	$\begin{array}{c} 2.609 \\ 1.818 \\ -0.143 \\ 1.804 \end{array}$	2.634 1.826 -0.090 1.792	2.650 1.844 -0.114 1.779	$\begin{array}{c} 0.002 \\ 0.132 \\ 0.084 \\ 0.094 \\ -0.080 \end{array}$
Dielectric constant	$\varepsilon_{33}^{S} \\ \varepsilon_{11}^{S} / \varepsilon_{0} \\ \varepsilon_{33}^{S} / \varepsilon_{0}$	41.7 41.9	41.7 41.7	41.7 41.4	0.00 -1.70
Density (kg/m ³)	ρ	7463.4	7460.6	7457.9	-18.26

Downloaded 05 Nov 2008 to 130.34.135.83. Redistribution subject to ASCE license or copyright; see http://jap.aip.org/jap/copyright.jsp

FIG. 8. Calculated chemical composition dependences of LSAW velocities for three typical substrates for SAW devices.

Within the range of nearly congruent chemical compositions employed here, all of the velocities, dielectric constants, and densities that were measured to determine the constants varied linearly with the chemical composition, and, as a result, all the constants varied linearly. The chemical composition dependences of LSAW velocities calculated for typical substrates, such as $128^{\circ}YX$ LiNbO₃, X-112°Y LiTaO₃, and $36^{\circ}YX$ LiTaO₃, which are widely used for SAW devices, using the constants determined were in good agreement with the experimental ones reported previously. The chemical composition dependences of the acoustical physical constants determined from these results enabled us to obtain the chemical composition dependences of the velocities for any arbitrarily cut crystalline surfaces, wave propagation directions, and modes by numerical calculations, eliminating the

TABLE VI. Measured and calculated chemical composition dependences of LSAW velocities for three typical substrates for SAW devices.

	Measured	Calculated	
128° YX-LiNbO3	37.2 (Ref. 17)	36.7	
$X-112^{\circ}Y$ LiTaO ₃	15.2 (Ref. 11)	13.6	
36° YX-LiTaO3	20.1 (Ref. 18)	22.6	

Unit: (m/s)/Li₂O mol %.

FIG. 9. Calculated relationship between LSAW velocities and PSAW velocities for a $36^{\circ}Y$ X-LiTaO₃ substrate.

need to conduct laborious and expensive experiments for which a series of crystals with different compositions must be prepared. Therefore the acoustical characteristics of these $LiNbO_3$ and $LiTaO_3$ crystals can be evaluated very efficiently.

Thus we have completed a method for evaluating inhomogeneities in acoustic properties among crystal ingots and wafers of LiNbO_3 and LiTaO_3 single crystals due to the chemical composition changes, based on measuring the velocities, such as the BAW velocities, LSAW velocities obtained by the LFB-UMC system, and SAW velocities measured by fabricating interdigital transducers on the substrates.

The LFB-UMC system has been successfully applied not only to standardized evaluation of the chemical composition of LiNbO₃ and LiTaO₃ wafers for SAW devices^{11,30} but also to evaluation and improvement of optical-grade LiTaO₃ crystals.^{10,31} Studies will be further extended to characterization and evaluation of stoichiometric LiNbO₃ and LiTaO₃ crystals destined for optical use which are grown by the double-crucible Czochralski technique.^{32,33}

ACKNOWLEDGMENTS

The authors are grateful to T. Sasamata of Yamaju Ceramics Co., Ltd. for growing the crystals and measuring the Curie temperatures, and to Y. Okada of Kogakugiken Co., Ltd. for preparing the specimens. This work was supported in part by the Research Grants-in-Aid from the Ministry of Education, Science, and Culture of Japan, and from the Japan Society for the Promotion of Science for the Research for the Future Program.

- ¹A. A. Ballman, J. Am. Ceram. Soc. 48, 112 (1965).
- ²J. R. Carruthers, G. E. Peterson, M. Grasso, and P. M. Bridenbaugh, J. Appl. Phys. 42, 1846 (1971).
- ³R. L. Barns and J. R. Carruthers, J. Appl. Crystallogr. 3, 395 (1970).
- ⁴S. Miyazawa and H. Iwasaki, J. Cryst. Growth 10, 276 (1971).
- ⁵J. Kushibiki and N. Chubachi, IEEE Trans. Sonics Ultrason. **SU-32**, 189 (1985).
- ⁶J. Kushibiki, Y. Ono, Y. Ohashi, and M. Arakawa, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 99 (2002).
- ⁷J. Kushibiki, N. Akashi, T. Sannomiya, N. Chubachi, and F. Dunn, IEEE

Trans. Ultrason. Ferroelectr. Freq. Control 42, 1028 (1995).

- ⁸J. Kushibiki and M. Arakawa, J. Acoust. Soc. Am. 108, 564 (2000).
- ⁹J. Kushibiki, Y. Ono, and I. Takanaga, Trans. Inst. Electron. Inf. Commun. Eng. C-I, J82-C-I, 715 (1999).
- ¹⁰ J. Kushibiki, T. Okuzawa, J. Hirohashi, and Y. Ohashi, J. Appl. Phys. 87, 4395 (2000).
- ¹¹J. Kushibiki, Y. Ohashi, and Y. Ono, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1068 (2000).
- ¹²J. Kushibiki and N. Chubachi, Ultrasonics International 91 Conference Proceedings (Butterworth and Heinemann, Oxford, 1991), pp. 1–13.
- ¹³ J. Kushibiki, I. Takanaga, M. Arakawa, and T. Sannomiya, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1315 (1999).
- ¹⁴ K. Shibayama, K. Yamanouchi, H. Sato, and T. Meguro, Proc. IEEE 64, 595 (1976).
- ¹⁵ H. Hirano, T. Fukuda, S. Matsumura, and S. Takahashi, *Proceedings of the First Meeting on Ferroelectric Materials and Their Applications*, Kyoto, Japan (1978), pp. 81–86.
- ¹⁶K. Nakamura, M. Kazumi, and H. Shimizu, *IEEE Ultrasonics Symposium Proceedings*, Phoenix, AZ (IEEE, New York, 1977), pp. 819–822.
- ¹⁷J. Kushibiki, H. Takahashi, T. Kobayashi, and N. Chubachi, Appl. Phys. Lett. 58, 2622 (1991).
- ¹⁸J. Kushibiki, H. Ishiji, T. Kobayashi, N. Chubachi, I. Sahashi, and T. Sasamata, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 83 (1995).
 ¹⁹A. W. Warner, M. Onoe, and G. A. Coquin, J. Acoust. Soc. Am. 42, 1223
- (1967). ²⁰ R. T. Smith and F. S. Welsh, J. Appl. Phys. **42**, 2219 (1971).

- Kushibiki et al. 6349
- ²¹G. Kovacs, M. Anhorn, H. E. Engan, G. Visintini, and C. C. W. Ruppel, *IEEE Ultrasonics Symposium Proceedings*, Honolulu, HI (IEEE, New York, 1990), pp. 435–438.
- ²²I. Takanaga and J. Kushibiki, IEEE Trans. Ultrason. Ferroelectr. Freq. Control (to be published).
- ²³ J. J. Campbell and W. R. Jones, IEEE Trans. Sonics Ultrason. SU-17, 71 (1970).
- ²⁴ K. Yamada, H. Takemura, Y. Inoue, T. Omi, and S. Matsumura, Jpn. J. Appl. Phys., Part 1 26-2, 219 (1987).
- ²⁵ M. Sato, A. Iwama, J. Yamada, M. Hikita, and Y. Furukawa, Jpn. J. Appl. Phys., Part 1 28-1, 111 (1989).
- ²⁶J. Kushibiki, Y. Ohashi, and M. Arakawa, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 274 (2000).
- ²⁷ J. Kushibiki and M. Arakawa, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 421 (1998).
- ²⁸IEEE Standard on Piezoelectricity, Std 176-1987.
- ²⁹ H. A. Bowman and R. M. Schoonover, J. Res. Natl. Bur. Stand. **71C**, 179 (1967).
- ³⁰J. Kushibiki, Y. Ohashi, and T. Ujiie, IEEE Trans. Ultrason. Ferroelectr. Freq. Control (to be published).
- ³¹J. Kushibiki, Y. Ohashi, Y. Ono, and T. Sasamata, IEEE Trans. Ultrason. Ferroelectr. Freq. Control (to be published).
- ³²K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kimura, and T. Hayashi, J. Cryst. Growth **116**, 327 (1992).
- ³³ Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, J. Cryst. Growth **197**, 889 (1999).