327 research outputs found

    The triple system KR Com

    Full text link
    Aims: We present the detailed analysis of triple system KR Com with different observational techniques - photometry, interferometry, and period variation. Methods: The use of BVR photometry of the close-contact binary KR Com, which is the primary component of a triple system, helps us to better describe the properties of the components. The interferometric data obtained during the last 30 years sufficiently determine the visual orbit, but the use of minima timings of KR Com for the study of period variation together with the visual orbit is a novel approach in this system. Results: Basic physical parameters resulting from the light curve analysis agree well with the previous results from spectroscopy. The temperatures for the primary and secondary component resulted in 5549 and 6072 K, respectively, and the amount of the third light in all filters is about 1/3 of the total luminosity. The distant third component revolves around the common barycenter on 11 yr orbit with a very high eccentricity (0.934) and this movement is also detectable via the period variation, which is clearly visible in the O-C diagram of times of minima observations. The use of minima times for the combined analysis helps us to independently determine the distance to the system (64.02 +/- 9.42 pc) and also to confirm the orientation of the orbit in space. Conclusions: New minima observations and also spectroscopy would be very profitable, especially during the next periastron passage in the year 2017.Comment: 7 pages, 7 figures, published in 2010A&A...519A..78

    Conserving Integrators for Parallel Manipulators

    Get PDF

    Collection of Minima of Eclipsing Binaries, part III.

    Get PDF
    We present CCD times of minima for selected eclipsing binaries, mainly parts of the multiple systems

    The first study of 54 new eccentric eclipsing binaries in our Galaxy

    Get PDF
    We present an analysis of the apsidal motion and light curve parameters of 54 galactic Algol-type binaries never before studied. This is the first analysis of such a large sample of eccentric eclipsing binaries in our Galaxy, and has enabled us to identify several systems that are worthy of further study. Bringing together data from various databases and surveys, supplemented with new observations, we have been able to trace the long-term evolution of the eccentric orbit over durations extending back up to several decades. Our present study explores a rather different sample of stars to those presented in the previously published catalogue of eccentric eclipsing binaries by Bulut & Demircan (2007), sampling to fainter magnitudes, covering later spectral types, sensitive to different orbital periods with more than 50% of our systems having periods longer than 6 days. The typical apsidal motion in the sample is rather slow (mostly of order of centuries long), although in some cases this is less than 50 years. All of the systems, except one, have eccentricities less than 0.5, with an average value of 0.23. Several of the stars also show evidence for additional period variability. In particular we can identify three systems in the sample, HD 44093, V611 Pup, and HD 313631, which likely represent relativistic apsidal rotators

    Circulating endothelial cell-derived extracellular vesicles mediate the acute phase response and sickness behaviour associated with CNS inflammation.

    Get PDF
    Brain injury elicits a systemic acute-phase response (APR), which is responsible for co-ordinating the peripheral immunological response to injury. To date, the mechanisms responsible for signalling the presence of injury or disease to selectively activate responses in distant organs were unclear. Circulating endogenous extracellular vesicles (EVs) are increased after brain injury and have the potential to carry targeted injury signals around the body. Here, we examined the potential of EVs, isolated from rats after focal inflammatory brain lesions using IL-1β, to activate a systemic APR in recipient naïve rats, as well as the behavioural consequences of EV transfer. Focal brain lesions increased EV release, and, following isolation and transfer, the EVs were sequestered by the liver where they initiated an APR. Transfer of blood-borne EVs from brain-injured animals was also enough to suppress exploratory behaviours in recipient naïve animals. EVs derived from brain endothelial cell cultures treated with IL-1β also activated an APR and altered behaviour in recipient animals. These experiments reveal that inflammation-induced circulating EVs derived from endothelial cells are able to initiate the APR to brain injury and are sufficient to generate the associated sickness behaviours, and are the first demonstration that EVs are capable of modifying behavioural responses
    corecore