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1. Introduction 

The present work deals with the development of time stepping schemes for the dynamics of 
parallel manipulators. In particular, we aim at energy and momentum conserving 
algorithms for a robust time integration of the differential algebraic equations (DAEs) which 
govern the motion of closed-loop multibody systems. It is shown that a rotationless 
formulation of multibody dynamics is especially well-suited for the design of energy-
momentum schemes. Joint coordinates and associated forces can still be used by applying a 
specific augmentation technique which retains the advantageous algorithmic conservation 
properties. It is further shown that the motion of a manipulator can be partially controlled 
by appending additional servo constraints to the DAEs. 
Starting with the pioneering works by Simo and co-workers [SW91, STW92, ST92], energy-
momentum conserving schemes and energy-decaying variants thereof have been developed 
primarily in the context of nonlinear finite element methods. In this connection, 
representative works are due to Brank et al. [BBTD98], Bauchau & Bottasso [BB99], Crisfield 
& Jelenić [CJ00], Ibrahimbegović et al. [IMTC00], Romero & Armero [RA02], Betsch & 
Steinmann [BS01a], Puso [Pus02], Laursen & Love [LL02] and Armero [Arm06], see also the 
references cited in these works. 
Problems of nonlinear elastodynamics and nonlinear structural dynamics can be 
characterized as stiff systems possessing high frequency contents. In the conservative case, 
the corresponding semi-discrete systems can be classified as finite-dimensional Hamiltonian 
systems with symmetry. The time integration of the associated nonlinear ODEs by means of 
energy-momentum schemes has several advantages. In addition to their appealing 
algorithmic conservation properties energy-momentum schemes are known to possess 
enhanced numerical stability properties (see Gonzalez & Simo [GS96]). Due to these 
advantageous properties energy-momentum schemes have even been successfully applied 
to penalty formulations of multibody dynamics, see Goicolea & Garcia Orden [GGO00]. 
Indeed, the enforcement of holonomic constraints by means of penalty methods again yields 
stiff systems possessing high frequency contents. The associated equations of motion are 
characterized by ODEs containing strong constraining forces. In the limit of infinitely large 
penalty parameters these ODEs replicate Lagrange’s equations of motion of the first kind 
(see Rubin & Ungar [RU57]), which can be identified as index-3 differential-algebraic 
equations (DAEs). This observation strongly supports the expectation that energy-

Source: Parallel Manipulators, New Developments, Book edited by: Jee-Hwan Ryu, ISBN 978-3-902613-20-2, pp. 498, April 2008,  
I-Tech Education and Publishing, Vienna, Austria
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momentum methods are also beneficial to the discretization of index-3 DAEs (see G´eradin 
& Cardona [GC01, Chapter 12] and Leyendecker et al. [LBS04]). 
The specific formulation of the equations of motion strongly affects the subsequent time 
discretization. In the context of multibody systems the main distinguishing feature of 
alternative formulations is the choice of coordinates for the description of the orientation of 
the individual rigid bodies. For this purpose some kind of rotational variables (e.g. joint-
angles, Euler angles or other 3-parameter representations of finite rotations) are often 
employed. In general, the equations of motion in terms of rotational variables are quite 
cumbersome. In the case of systems with tree structure one is typically confronted with 
highly-nonlinear ODEs. Further challenges arise in the case of closed-loop systems due to 
the presence of algebraic loop-closure constraints leading to index-3 DAEs. As a 
consequence of their inherent complexity, the design of energy-momentum conserving 
schemes is hardly conceivable for formulations of general multibody systems involving 
rotations. 
In the present work the use of rotational variables is completely circumvented in the 
formulation of the equations of motion. Our formulation turns out to be especially well-
suited for the energy-momentum conserving integration of both open-loop and closed-loop 
multibody systems. In our approach the orientation of each rigid body is characterized by 
the elements of the rotation matrix (or the direction cosine matrix). This leads to a set of 
redundant coordinates which are subject to holonomic constraints. In this connection two 
types of constraints may be distinguished (see also Betsch & Steinmann [BS02b]): (i) Internal 
constraints which are intimately connected to the assumption of rigidity and, (ii) external 
constraints due to the interconnection of the bodies constituting the multibody system. Item 
(ii) implies that loop-closure constraints can be taken into account without any additional 
difficulty. The resulting DAEs exhibit a comparatively simple structure which makes 
possible the design of energy-momentum conserving schemes. Another advantage of the 
present rotationless formulation of multibody systems lies in the fact that planar motions as 
well as spatial motions can be treated without any conceptual differences. That is, the 
extension from the planar case to the full three-dimensional case can be accomplished in a 
straightforward way, which is in severe contrast to formulations employing rotations, due 
to their non-commutative nature in the three-dimensional setting. It is worth mentioning 
that the present rotationless approach resembles to some degree the natural coordinates 
formulation advocated by Garcia de Jalon et al. [JUA86]. 
As pointed out above the rotationless formulation of multibody systems benefits the design 
of energy-momentum schemes. On the other hand, the advantages for the discretization 
come at the expense of a comparatively large number of unknowns. In addition to that, 
joint-angles and associated torques are often required in practical applications, for example, 
if a joint is actuated. The size of the algebraic system to be solved can be systematically 
reduced by applying the discrete null space method developed in [Bet05a]. Indeed, the 
present treatment of planar multibody dynamics fits into the framework proposed in 
[BL06,LBS]. The main new contributions presented herein are (i) a coordinate augmentation 
technique which facilitates to incorporate rotational degrees of freedom along with 
associated torques and, (ii) the incorporation of control constraints in order to perform a 
controled movement of fully and underactuated multibody systems. 
An outline of the rest of the paper is as follows: In Section 2 the formulation of constrained 
mechanical systems is outlined and the energy-momentum conserving discretization is 
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introduced. Section 3 contains the advocated description of rigid bodies in terms of 
redundant coordinates. Section 4 deals with two basic kinematic pairs, i.e. the revolute and 
prismatic pair as building blocks of multibody systems. In addition to that, the 
newlyproposed coordinate augmentation technique for the incorporation of joint 
coordinates and associated torques or forces is presented. The application of the above 
mentioned features will be carried out with the example of a planar parallel manipulator of 
RPR type (Section 5). Conclusions are drawn in Section 6. 

2. Dynamics of constrained mechanical systems 

In the present work we focus on discrete mechanical systems subject to constraints which 

are holonomic and scleronomic. Due to the specific formulation of rigid bodies (see Section 

3) the equations of motion for multibody systems can be written in the form 

 

(1) 

where q(t) ∈ R n
 specifies the configuration of the mechanical system at time t, and v(t) ∈ 

R n is the velocity vector. Together (q, v) form the vector of state space coordinates (see, for 

example, Rosenberg [Ros77]). A superposed dot denotes differentiation with respect to time 

and M ∈ R n×n
 is a constant and symmetric mass matrix, so that the kinetic energy can be 

written as 

 
(2) 

Moreover, F ∈ R n
 is a load vector which in the present work is decomposed according to 

 (3) 

Here, V (q) ∈ R  is a potential energy function and Q ∈ R n accounts for loads which can 

not be derived from a potential. Moreover, φ(q) ∈ R m is a vector of geometric constraint 

functions, G = D φ(q) ∈ R m×n is the constraint Jacobian and λ ∈ R m is a vector of 

multipliers which specify the relative magnitude of the constraint forces. In the above 

description it is tacitly assumed that the m constraints are independent. 

Due to the presence of holonomic (or geometric) constraints (1)3, the configuration space of 

the system is given by 

 (4) 

The equations of motion (1) form a set of index-3 differential-algebraic equations (DAEs) 

(see, for example, Kunkel & Mehrmann [KM06]). They can be directly derived from the 

classical Lagrange’s equations. 
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2.1 Energy-momentum discretization 

‘Experience indicates that the best results can generally be obtained using a direct 

discretization of the equations of motion.’ Leimkuhler & Reich [LR04, Sec. 7.2.1] 

2.1.1 The basic energy-momentum scheme 

For the direct discretization of the DAEs (1), we employ the methodology developed by 

Gonzalez [Gon99]. Consider a representative time interval [tn, tn+1] with time step Δ t = 

tn+1−tn, and given state space coordinates qn ∈ Q, vn ∈ R n
 at tn. The discretized version of 

(1) is given by 

 

(5) 

with 

 (6) 

In the sequel, the algorithm (5) will be called the basic energy-momentum (BEM) scheme. 

The advantageous algorithmic conservation properties (see Remark 2.1 below) of the BEM 

scheme are linked to the notion of a discrete gradient (or derivative) of a function f : R n
 →  

R . In the present work ∇ f (qn, qn+1) denotes the discrete gradient of f. It is worth 

mentioning that if f is at most quadratic then the discrete gradient coincides with the 

standard gradient evaluated in the mid-point configuration qn+1/2 = (qn+qn+1)/2, that is, in 

this case ∇  f (qn, qn+1) = ∇  f (qn+1/2 ). In (5)2 the discrete gradient is applied to the potential 

energy function V as well as to the constraint functions φi. In particular, the discrete 

constraint Jacobian is given by 
 

 
(7) 

Concerning (6), for the present purposes it suffices to set Q (qn, qn+1) = Q (qn+1/2 ). The BEM 

scheme can be used to determine qn+1 ∈ Q, vn+1 ∈ R n and ⎯λ ∈ R m. To this end, one may 

substitute for vn+1 from (5)1 into (5)2 and then solve the remaining system of nonlinear 

algebraic equations for the n + m unknowns (qn+1, ⎯λ). We refer to [Bet05a] for further details 

of the implementation.  

Remark 2.1 The algorithm (5) inherits fundamental mechanical properties from the underlying 

continuous formulation such as (i) conservation of energy, and (ii) conservation of momentum maps 

that are at most quadratic in (q, v). While algorithmic conservation of linear momentum is a trivial 

matter, algorithmic conservation of angular momentum and total energy is made possible by the 

specific formulation of rigid bodies and multibody systems proposed in the present work. 
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3. The planar rigid body 

In the present work we make use of six redundant coordinates for the description of the 
placement of the planar rigid body. In particular, the vector of redundant coordinates is 
given by 

 

(8) 

where ϕ∈ R 2 is the position vector of the center of mass and d α ∈ R 2,α ∈ {1, 2}, are two 

directors which specify the orientation of the rigid body (Fig. 1). In the sequel, all of the 
coordinates in (8) are referred to a right-handed orthonormal basis {e1, e2}, which plays the 
role of an inertial frame. The directors are assumed to constitute a right-handed body frame 
which coincides with the principal axis of the rigid body. Since the directors are fixed in the 

body and moving with it, they have to stay orthonormal for all times t ∈ R +. This gives rise 

to three independent geometric (or holonomic) constraints φ
int

i (q) = 0, which may be termed 

internal constraints since they are intimately connected with the assumption of rigidity. The 

functions φ
int

i : R 6
 →  R  may be arranged in the vector of internal constraint functions 

 

(9) 

 

Figure 1: The planar rigid body. 
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With regard to the internal constraints the configuration space of the free rigid body may 
now be written in the form 

 
(10) 

Note that the director frame {d1, d2} can be connected with a rotation matrix R∈ SO(2), 

through the relationship d α  = Re α . In this connection, 

 
(11) 

is the special orthogonal group of R 2. Accordingly, R α β  = e α · d β , such that the 

directors coincide with the columns of the rotation matrix. Alternatively, the configuration 
space of the free rigid body may be written as 

 
The motion of the free rigid body can now be described by means of the DAEs (1). To this 

end, we have to provide the mass matrix M ∈  R 6×6, which is given by 

 

(12) 

Here, M is the total mass of the rigid body and E1, E2 are the principal values of the Euler 

tensor relative to the center of mass. With respect to a reference configuration β  with 

material points X = (X1, X2) ∈ β  these quantities are given by 

 

(13) 

where ρ (X) is the local mass density. Note that E1, E2 can be related to the classical polar 
momentum of inertia about the center of mass, J, via the relationship 

 (14) 

Furthermore, in view of the constraint functions (9), the constraint Jacobian pertaining to the 
free rigid body is given by G int = D φ int(q). Thus 

 

(15) 
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To summarize, the motion of the planar free rigid body is governed by the DAEs (1), with n 
= 6 and m = 3. This rigid body formulation is the cornerstone of the present approach to the 
energy-momentum integration of arbitrary multibody systems. Additional details about the 
present rigid body formulation may be found in [BS01b,BL06]. 

4. Kinematic pairs 

This section deals with basic kinematic pairs which are fundamental for building complex 
multibody systems. Here we will present the revolute and the prismatic pair which 
represent the basic pairs necessary to model common planar parallel manipulators. Within 
this chapter we will also introduce a specific coordinate augmentation technique for both 
pairs in order to incorporate joint variables into the present rigid body formulation. 

4.1 The planar revolute pair 
Each rigid body of the multibody system depicted in Fig. 2 is modelled as constrained 
mechanical system as described in Section 3. Accordingly, body A is characterized by 6 
redundant coordinates 

 

(16) 

along with internal constraints φ
int

A  (qA) ∈ R 3 of the form (9), associated constraint Jacobian 

G
int

A (qA) ∈ R 3×6 of the form (15), and mass matrix MA ∈ R 6×6 of the form (12). 
 

 

Figure 2: The planar revolute pair. 
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The description of the whole multibody system relies on the assembly of the individual 

bodies. The assembly procedure consists of the following steps. (i) The contributions of each 

individual body are collected in appropriate system vectors/matrices. For example, in the 

case of the present 2-body system (Fig. 2) we get the vector of redundant coordinates 

 
(17) 

along with the mass matrix 

 
(18) 

which, in view of (12), is diagonal and constant. Moreover, the constraints of rigidity are 

collected in the vector 

 
(19) 

with corresponding constraint Jacobian 

 
(20) 

(ii) The interconnection between the rigid bodies in a multibody system is accounted for by 

external constraints. 

For the revolute pair we get two additional constraint functions of the form 

 (21) 

where the vector 

 

(22) 

specifies the position of the joint on body A. The constraints (21) give rise to the Jacobian 

 
(23) 

Accordingly, the present 2-body system is characterized by a total of m = 8 independent 

constraints 
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(24) 

with corresponding 8 × 12 constraint Jacobian 

 
(25) 

To summarize, the present description of the revolute pair makes use of n = 12 redundant 
coordinates subject to m = 8 constraints. This complies with the fact that the system at hand 

has n － m = 4 degrees of freedom. Obviously, the configuration space of the revolute pair, 

Qrevolute, can be written in the form (4). 

4.1.1 Discrete constraint Jacobian 

Since the constraint functions in (24) are at most quadratic, the associated discrete derivative 
coincides with the mid-point evaluation of the continuous constraint Jacobian (25), i.e. 

 
(26) 

4.1.2 Coordinate augmentation 

In many practical applications rotational variables along with associated torques are 

required for the description of a multibody system. Although the present approach 

circumvents the use of rotational variables throughout the discretization procedure, 

rotations can be easily incorporated into the present method. To this end, we next propose a 

coordinate augmentation technique. The idea is to incorporate a joint torque into the 

revolute pair (Fig. 2). Therefore we extend the original configuration vector 

 

(27) 

The new coordinate Θ  is connected with the original ones by introducing an additional 

constraint function of the form 

 (28) 

In anticipation of the subsequent treatment of the discretization we write (28) in partitioned 

form 

 
(29) 
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with the original coordinates 

 
(30) 

and 

 
(31) 

Additionally, we get the Jacobian 

 
(30) 

With regard to (29), we decompose (32) according to 

 
(33) 

with 

 

(34) 

To summarize, we now have n = 13 coordinates subject to m = 9 geometric constraints. In 

order to completely specify the DAEs (1) for the augmented system at hand one simply has 

to extend the relevant matrices of the revolute pair in Section 4.1. Accordingly, the mass 

matrix of the augmented system is given by 

 

(35) 

In view of (28), the augmentation gives rise to an extended vector of constraint functions of 

the form 

 
(36) 

where φori stands for the original constraints given by (24). The augmented constraint 

Jacobian assumes the form 
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(37) 

where Gori represents the original constraint Jacobian given by (25). 

4.1.3 Discrete constraint Jacobian 

The discrete version of (37) can be written as 

 

(38) 

Since the constraint functions φori(qori) and φ 1

aug  (qori) (cf. (24) and (31)1, respectively) are at 

most quadratic, the associated discrete gradient coincides with the mid-point evaluation of 
the respective continuous constraint Jacobians. This is in contrast to the constraint function 

φ 2

aug
 ( Θ ), see (31)2. In this case we choose 

 

(39) 

If 

 
 
Remark 4.1 Formula (39) can be interpreted as G-equivariant discrete derivative of the 
corresponding constraint function in the sense of Gonzalez [Gon96]. In this connection G represents 
the group acting by translations and rotations, respectively. In the present case (39) coincides with 
Greenspan’s formula [Gre84]. 

4.1.4 Numerical example 

To demonstrate the numerical performance of the present formulation we investigate the 
free flight of our institute logo NM (Numerical Mechanics1). Both letters are modelled as 
rigid bodies which are connected by a revolute joint. (Fig. 3). 
The inertial parameters for the numerical example are summarized in Table 1. The location 
of the joint relative to each body is specified by (22) with 
The inertial parameters for the numerical example are summarized in Table 1. The location 
of the joint relative to each body is specified by (22) with 

 
(40) 

                                                 
1 http://www.uni-siegen.de/fb11/nm 
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Figure 3: The NM-logo as 2-body system. Arbitrary configuration of both connected letters. 

The initial configuration of the system is given by the following generalized coordinates (see 
Fig. 3) 

 

(41) 

Initial generalized velocities can be written as 

 

(42) 
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In the present example the system is initially at rest, i.e. ν 0 = 0. Since it is a free flight, we 

neglect the gravitational forces, having no potential energy in the system. To initialize the 

motion, external loads Q∈ R13 are acting on the system. Specifically, 

 
(43) 

This means that we only apply an external joint torque, which is directly acting on the newly 

introduced rotational component Θ . The torque itself is applied in the form of a hat 

function over time (cf. Fig. 4), where t1 = 0.25, t 2 = 0.5, m = 5. Accordingly, for t > t2 no 

external forces act on the system anymore. The system can thus be classified as an 

autonomous Hamiltonian system with symmetry. Consequently, the Hamiltonian (or the 

total energy) represents a conserved quantity for t > t2. The angular momentum remains 

equal for all times, since it is an internal joint torque acting on the system. The present 

energy-momentum scheme does indeed satisfy these conservation properties for any time 

step Δ t, see Fig. 5. The simulated motion is illustrated with some snapshots at discrete 

times in Fig. 6. Moreover, the evolution of the angle Θ (t), calculated with different time 

steps Δ t ∈ {0.1, 0.05, 0.01}, is depicted in Fig. 7. 
 

 
 

 
 

Figure 4: Magnitude of the torque during the initial load period. 
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Table 1: Inertial parameters for the 2-body system. 

 

 
Figure 5: Algorithmic conservation of energy and angular momentum, Δ t = 0.05. 
 

 

Figure 6: Snapshots of the free flying NM-logo. The two curves correspond to the trajectories 
of the mass centers of the individual bodies constituting the present multibody system (t ∈ 
{0, 1, 2}s). 
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Figure 7: Angle Θ (t) over time. 

4.2 The planar prismatic pair 

Analogous to the previously presented revolute pair, we now focus on the prismatic pair. 

The procedure is similar to the prismatic pair, we will present the necessary constraints and 

their Jacobians. A coordinate augmentation for the prismatic pair will measure the distance 

between both rigid bodies. The example will deal with a planar linear motion guide. 

The prismatic pair (Fig. 8) will again be considered as a constrained mechanical systems. 

Since the number of bodies and their internal description corresponds to the revolute pair, 

the configuration vector (17), the mass matrix (18) and the internal constraints as well as 

their Jacobians (19), (20) have the same structure as already presented for the revolute pair. 

The interconnection between both bodies characterizes the prismatic joint and can be 

written as: 

 
(44) 

with the vectors 

 

(45) 

The vector ρ i has already been defined in eq. (22). The value of η  in (44) needs to be 

prescribed initially. The corresponding constraint Jacobian yields: 
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(46) 

with 

 
(47) 

This leads again to m = 8 independent constraints, the global constraint Jacobian has the 
form of eq. (25). The number of unknowns is the same as for the revolute pair, since we only 
have one relative coordinate between both bodies (u). 
 

 

Figure 8: The planar prismatic pair. 

4.2.1 Discrete constraint Jacobian 

A closer investigation of (44) reveals that the constraint functions are quadratic, which 
means that the discrete derivative coincides with the mid-point evaluation of the constraint 
Jacobian (46). Therefore the discrete version of the constraint Jacobian is given by: 
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4.2.2 Coordinate augmentation 

As already outlined for the revolute pair, for practical issues it is vital to incorporate 

augmented values into our rotationless formulation for multibody systems. Similar to the 

introduction of a relative angle for the revolute pair, we now account for the translational 

displacement between both rigid bodies. This time we will augment the system by the 

variable u which represents a generalized coordinate measuring the distance between the 

center of masses of both bodies.  

Accordingly we start with the extension of our configuration vector by the new coordinate: 

 

(49) 

The incorporation of a new redundant coordinate needs also a corresponding constraint. In 

this case we can write: 

 
(50) 

As outlined before, n represents the axis of sliding and can also be described as 

 

(51) 

Again we decompose the constraint vector in two parts. One depending on the original 

coordinates and a second one depending on the newly introduced coordinate u 

 
(52) 

The same will be done with its corresponding constraint Jacobian: 

 (53) 

For both parts we obtain: 

 
(54) 

As already presented in section (4.1.2), extending the configuration vector means also to 

expand the mass matrix (35) and the global constraint Jacobian (37). These steps are 

equivalent to the revolute pair. 
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4.2.3 Discrete constraint Jacobian 

The discrete version of (37) for the prismatic pair can be written as 

 

(55) 

Since the augmented constraint is at most quadratic, a simple mid-point evaluation is 
sufficient. 
 

 

Table 2: Inertial parameters for the prismatic 2-body system. 

4.2.4 Numerical example 

In order to demonstrate the performance of the prismatic pair, we consider a linear motion 
guide (Fig. 9). It consists of two rigid bodies connected via a prismatic joint. The pair moves 
freely with given initial velocities in space. 
 

 

Figure 9: The linear motion guide as a 2 body system. 
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The inertial parameters for the numerical example are summarized in Table 2. The initial 
configuration of the system is given by (cf. Section 4.2 and Fig. 8): 

 

(56) 

Initial velocities can again be set in a generalized form: 

 

(57) 

Since there are no loads applied on the system, the total energy (Hamiltonian) and the 
angular momentum shall be conserved quantities. Once again the present energy-

momentum scheme does indeed satisfy these conservation properties for any time step Δ t, 
see Fig. 10. Some specific positions of the motion are displayed in Fig. 11. The evolution of 

the augmented coordinate u for different time steps Δ t ∈ {0.1, 0.05, 0.01}, is depicted in Fig. 
12. 
 

 
 

Figure 10: Algorithmic conservation of energy and angular momentum, Δ t = 0.1. 
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Figure 11: Snapshots of the free flight of the prismatic pair. Trajectories mark the movement 
of the center of masses (t ∈ {0, 0.8, 1.5}s). 
 

 

Figure 12: Translational displacement u over time. 
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5. Planar parallel manipulator 

In this section we will combine all previous features in the example of a planar parallel 
manipulator. Since we have presented the revolute and prismatic pair, we will build a 
model of a RPR-manipulator, where the letters mark the kind of joints the mechanism 
consists of (Revolute-Prismatic-Revolute). The Figure below shows the configuration of the 
RPR-manipulator: 

 

Figure 13: Schematics of the RPR-manipulator. 

The goal in this example is to perform a controlled motion (vector qC in upper Figure) of the 
inner triangle (body 7). Therefore we need to augment our original BEM-scheme (1) by 
control constraints and their corresponding constraint Jacobian. The enhanced continuous 
DAE structure yields to: 

 

(58) 

Here φ C(q) accounts for the newly introduced control constraints. Their corresponding 

Jacobian is B, while its product with⎯m represents the necessary control forces.  
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A direct discretization of the equations above leads to an enhanced BEM-scheme for the 
presented underactuated system: 

 

(59) 

5.1 Rotationless formulation for the RPR manipulator 

Here we will present the rotationless formulation for the RPR manipulator. The 

incorporation of rotational redundant coordinates plays a crucial role for the desired control 

problem. Additionally, as already presented in the sections before, we will also introduce 

translational redundant coordinates which measure the movement of the prismatic pairs. 

The mechanism presented herein consists of 8 rigid bodies. Bodies 1, 2 and 3 are connect via 

revolute joints to the free floating platform (body 8). The connection between body 1, 2, 3 

and 4, 5, 6 is established by prismatic pairs. Finally 4, 5 and 6 are connected to the small 

triangle (body 7) via revolute joints. This structure consists of two closed loops, which 

means to formulate corresponding loop-closure constraints. The system at hand can then be 

characterized by the following configuration vector: 

 

(60) 

The upper vector has a size of 48, having eight rigid bodies means to invoke another mint = 

18 internal constraints and having nine joints at hand leads to mext = 24 external constraints. 

The difference n - mint - mext = 6 means that the system at hand has a total of 6 DOF, since the 

platform (body 8) moves completely free and the inner triangle has another three DOF. 

The necessary constraints for building the individual joints can be directly derived from 

chapter 4.1 and 4.2. This leads automatically to the closure of both loops. Here we neglect a 

detailed description of each individual joint and their constraint Jacobians, and only refer to 

the two previous chapters. 

5.2 Coordinate augmentation 

We now focus on the augmentation technique which is vital for the present application. As 

already outlined for both pairs (4.1 and 4.2), we incorporate rotational DOF (relative angles 

in-between body 8 and body 1, 2, 3) as well as translational DOF (distance between center of 

mass of body 1, 2, 3 and 4, 5, 6). 
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5.2.1 Rotational DOF 

As indicated in Fig. 13, the first three joints of the parallel manipulator (with corresponding 

joint-rates Θ$ 1, Θ$ 2 and Θ$ 3) are actuated. To incorporate into the underlying rotationless 

formulation the possibility of imposing joint-torques (m 1, m 2, m 3), we apply the 

coordinate augmentation technique proposed in Section 4.1.2. Indeed, the application of the 
coordinate augmentation technique to the present closed-loop system follows from a 

straight-forward extension of the treatment of the revolute pair in Section 4.1.  

Similar to (27), we augment the originally used redundant coordinates qori ∈ R 48 with the 
joint-angles 

 

(61) 

such that the augmented configuration vector reads 

 
(62) 

Accordingly, we now have n = 51 redundant coordinates. The three additional coordinates 
(61) are linked to the original ones through the introduction of three additional constraint 
functions. Similar to (36), the extended vector of constraint functions reads 

 
(63) 

where, similar to (29), the additional constraints are specified by 

 
(64) 

where 

 

(65) 

and 

 

with 
 

(66) 

We thus have a total of m = 45 constraints. Consequently, the BEM scheme relies on n + m = 
96 unknowns. Similar to (37), the augmented constraint Jacobian is given by 
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(67) 

The 3 × 48 matrix G
I

aug (qori) has the same structure as (34)1, and G
II

aug  ( Θ ) is given by 

 

(68) 

Similar to (55) the discrete counterpart of (67) can be written in the form 

 

(69) 

Here, the discrete version of (68) assumes the form 

 

(70) 

with 

 

(71) 

5.2.2 Translational DOF 

As already outlined for the prismatic pair in section 4.2.2, we apply the coordinate 

augmentation technique to incorporate translational DOF in the prismatic connection for the 

RPR manipulator. This means that additionally to the angle augmentation, we again 

augment the configuration vector by another three redundant coordinates: 

 

(72) 

taking into account the augmented part from section 5.2.1 such that the new augmented 

configuration vector reads 
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(73) 

Thus the number of redundant coordinates raises to n = 54. Once again, the new redundant 
coordinates require additional constraint functions. Similar to (64), the constraint functions 
are specified by 

 
(74) 

where 

with 
 

(75) 

and 

 

with 
 

(76) 

The corresponding augmented constraint Jacobian in a decomposed fashion (67) is given by 

 

(77) 

For the sake of simplicity G
I

aug (q) will not be treated detailed, because its structure has 

already been presented in 4.2, (46).  
The discrete counterpart of the equation above equals the expression itself. 

5.3 Numerical example 
As mentioned before our intention is to let body number 7 move upon a prescribed 
trajectory and calculate the necessary driving torques (input values) acting in the revolute 
joints. The desired trajectory shall follow a figure-8 pattern as similarly proposed in [MR06]: 

 
(78) 

while ω(t) describes the angular velocity which for this example is defined as a 9th order 
polynomial. The polynomial was proposed in [BK04] and is well suited for control problems 
due to its continuous and steady character. In this example it is defined as followed: 
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(79) 

where 

(80) 

Specifically we choose here 

 (81) 

Since during this motion the inner triangle (body 7) shall not rotate we also have to 
implement another constraint suppressing the rotation 

 (82) 

The whole control constraint for the desired motion can then be written as: 

 
(83) 

The corresponding constraint Jacobian for the new control constraints yields: 

 (84) 

Since no external forces act on the system, its center of mass does not have to move. 
Moreover, since no external torques act on the system, the total angular momentum shall be 
a conserved quantity. The necessary driving torques to perform the desired motion are 
computed directly. 
 

 

Table 3: Inertial and geometric properties pertaining to the six legs of the manipulator. 
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Table 4: Inertial and geometric properties pertaining to the two platforms of the 
manipulator. 

Inertial and geometric properties of the rigid bodies constituting the parallel manipulator 

are summarized in Tables 3 and 4. In this connection, the two platforms (bodies 7 and 8) 

coincide with isosceles triangles of side-length L (Table 4).  

The initial configuration of the closed-loop system can completely be specified by its 

generalized coordinates, accordingly 
 

 

(85) 

 

where the value of the initial posture of the small triangle (body 7) has been rounded for 

simplicity of exposition. As expected, the present energy-momentum schemes does indeed 

satisfy the above-mentioned conservation properties for any time step Δ t, see Fig. 14. The 

simulated motion of the manipulator is illustrated in Fig. 16 by showing snapshots of the 

multibody system at subsequent points of time. The conservation of the total angular 

momentum also indicates that the position of the center of mass does not move for all times. 

The red glowing path in Fig. 16 corresponds to the trajectory of the center of mass of the 

small platform (body 7), representing the prescribed trajectory. Moreover, the evolution of 

the joint-angles Θ 1(t), Θ 2(t) and Θ 3(t), the translational displacements of the prismatic 

pairs u1(t), u2(t) and u3(t) calculated with a time step of Δ t = 0.02, are depicted in Fig. 15 and 

Fig. 17. The necessary driving torques to perform the prescribed motion are displayed in 

Fig. 18. 
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Figure 14: Total energy, conservation of angular and linear momentum ( Δ t = 0.02). 
 

 

Figure 15: Joint-angles over time ( Δ t = 0.02). 
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Figure 16: Snapshots of the motion of the free floating parallel manipulator for t ∈ {1, 1.5, 2, 
3}s. 
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Figure 17: Augmented translational displacement over time ( Δ t = 0.02). 

 

 

Figure 18: Driven joint-torques over time ( Δ t = 0.02). 
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6. Conclusions 

We have shown that the proposed rotationless formulation of multibody dynamics is well-

suited for the energymomentum conserving integration of both open-loop and closed-loop 

multibody systems. Although the use of rotations has been completely circumvented 

throughout the whole discretization, joint-forces can still be applied to a specific multibody 

system by resorting to the proposed coordinate augmentation technique. 

The present developments have been restricted to the planar case. However, it is important 

to note, that the extension to the three-dimensional setting can be performed without any 

conceptual differences. Similarly, alternative types of joints belonging to the class of lower 

kinematic pairs such as cylindric joints can be easily incorporated into the present approach. 

Both aforementioned issues have been addressed in [BL06]. 

The numerical examples presented herein have been specifically designed to check the 

algorithmic conservation properties. Within computational accuracy, the present approach 

facilitates the algorithmic conservation of energy as well as linear and angular momentum. 

Energy-momentum preserving schemes meet the specific demands on the stable numerical 

integration of the underlying index-3 DAEs. While the BEM scheme employed herein (cf. 

Section 2.1.1) is second-order accurate in the state space coordinates, higher-order energy-

momentum schemes may be designed as set forth in [BS02a,GBS05]. The ostensible 

disadvantage of using redundant coordinates can be remedied by applying the size 

reduction techniques proposed in [BU07,BL06]. Specifically, it is shown in [BU07] that these 

techniques can be systematically applied to closed loop systems. Accordingly, they can be 

directly used in the example of the parallel manipulator dealt with in Section 5. 

We have also presented the incorporation of servo / control constraints into our BEM 

scheme. This makes possible to perform a direct discretization for fully or underactuated 

systems and computing directly the necessary input values in order to control a system, 

without solving the standard inverse dynamics problem. Similar work has also been 

published in [BUQ]. 

It is further worth mentioning that semi-discrete formulations of flexible bodies such as 

nonlinear continua, beams and shells perfectly fit into the present framework provided by 

the DAEs (1). Accordingly, the present approach can be directly extended to flexible 

multibody dynamics (see [Bet06,Bet05b,LBS,SB]). 
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