150 research outputs found

    Microwave-assisted tunneling and interference effects in superconducting junctions under fast driving signals

    Full text link
    The following article appeared in Physical Review B 101.13 (2020): 134507. DOI:10.1103/PhysRevB.101.134507. Open access publication funded by the Max Planck SocietyAs scanning tunneling microscopy is pushed towards fast local dynamics, a quantitative understanding of tunnel junctions under the influence of a fast ac driving signal is required, especially at the ultralow temperatures relevant to spin dynamics and correlated electron states. We subject a superconductor-insulator-superconductor junction to a microwave signal from an antenna mounted in situ and examine the dc response of the contact to this driving signal. Quasiparticle tunneling and the Josephson effect can be interpreted in the framework of Tien-Gordon theory. The situation is more complex when it comes to higher-order effects such as multiple Andreev reflections. Microwave-assisted tunneling unravels these complex processes, providing deeper insights into tunneling than are available in a pure dc measurementJ.C.C. acknowledges funding from the Spanish Ministry of Economy and Competitiveness (MINECO) (Contract No. FIS2017-84057-P). J.A. acknowledges support from the IQST and the German Science Foundation (DFG) under Grant No. AN336/11-1. This work was funded in part by the ERC Consolidator Grant AbsoluteSpin (Grant No. 681164

    Combining Electron Spin Resonance Spectroscopy with Scanning Tunneling Microscopy at High Magnetic Fields

    Get PDF
    Magnetic media remain a key in information storage and processing. The continuous increase of storage densities and the desire for quantum memories and computers pushes the limits of magnetic characterisation techniques. Ultimately, a tool which is capable of coherently manipulating and detecting individual quantum spins is needed. The scanning tunnelling microscope (STM) is the only technique which unites the prerequisites of high spatial and energy resolution, low temperature and high magnetic fields to achieve this goal. Limitations in the available frequency range for electron spin resonance STM (ESR-STM) mean that many instruments operate in the thermal noise regime. We resolve challenges in signal delivery to extend the operational frequency range of ESR-STM by more than a factor of two and up to 100GHz, making the Zeeman energy the dominant energy scale at achievable cryogenic temperatures of a few hundred millikelvin. We present a general method for augmenting existing instruments into ESR-STMs to investigate spin dynamics in the high-field limit. We demonstrate the performance of the instrument by analysing inelastic tunnelling in a junction driven by a microwave signal and provide proof of principle measurements for ESR-STM.Comment: 8 pages, 7 figure

    Coupling angle variability in healthy and patellofemoral pain runners

    Get PDF
    Background Patellofemoral pain is hypothesized to result in less joint coordination variability. The ability to relate coordination variability to patellofemoral pain pathology could have many clinical uses; however, evidence to support its clinical application is lacking. The aim was to determine if vector coding's coupling angle variability, as a measure of joint coordination variability, was less for runners with patellofemoral pain than healthy controls as is commonly postulated. Methods Nineteen female recreational runners with patellofemoral pain and eleven healthy controls performed a treadmill acclimation protocol then ran at a self-selected pace for 15 min. 3-D kinematics, force plate kinetics, knee pain and rating of perceived exertion were recorded each minute. Data were selected for the: pain group at the highest pain reached (pain � 3/10) in a non-exerted state (exertion < 14/20), and; non-exerted healthy group from the eleventh minute. Coupling angle variability was calculated over several portions of the stride for six knee-ankle combinations during five non-consecutive strides. Findings 46 of 48 coupling angle variability measures were greater for the pain group, with 7 significantly greater (P <.05). Interpretation These findings oppose the theory that less coupling angle variability is indicative of a pathological coordinate state during running. Greater coupling angle variability may be characteristic of patellofemoral pain in female treadmill running when a larger threshold of pain is reached than previously observed. A predictable and directional response of coupling angle variability measures in relation to knee pathology is not yet clear and requires further investigation prior to considerations for clinical utility. © 2013 Elsevier Ltd

    Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes

    Get PDF
    Slowly-compressed single crystals, bulk metallic glasses (BMGs), rocks, granular materials, and the earth all deform via intermittent slips or “quakes”. We find that although these systems span 12 decades in length scale, they all show the same scaling behavior for their slip size distributions and other statistical properties. Remarkably, the size distributions follow the same power law multiplied with the same exponential cutoff. The cutoff grows with applied force for materials spanning length scales from nanometers to kilometers. The tuneability of the cutoff with stress reflects “tuned critical” behavior, rather than self-organized criticality (SOC), which would imply stress-independence. A simple mean field model for avalanches of slipping weak spots explains the agreement across scales. It predicts the observed slip-size distributions and the observed stress-dependent cutoff function. The results enable extrapolations from one scale to another, and from one force to another, across different materials and structures, from nanocrystals to earthquakes

    Supplementing High-Density SNP Microarrays for Additional Coverage of Disease-Related Genes: Addiction as a Paradigm

    Get PDF
    Commercial SNP microarrays now provide comprehensive and affordable coverage of the human genome. However, some diseases have biologically relevant genomic regions that may require additional coverage. Addiction, for example, is thought to be influenced by complex interactions among many relevant genes and pathways. We have assembled a list of 486 biologically relevant genes nominated by a panel of experts on addiction. We then added 424 genes that showed evidence of association with addiction phenotypes through mouse QTL mappings and gene co-expression analysis. We demonstrate that there are a substantial number of SNPs in these genes that are not well represented by commercial SNP platforms. We address this problem by introducing a publicly available SNP database for addiction. The database is annotated using numeric prioritization scores indicating the extent of biological relevance. The scores incorporate a number of factors such as SNP/gene functional properties (including synonymy and promoter regions), data from mouse systems genetics and measures of human/mouse evolutionary conservation. We then used HapMap genotyping data to determine if a SNP is tagged by a commercial microarray through linkage disequilibrium. This combination of biological prioritization scores and LD tagging annotation will enable addiction researchers to supplement commercial SNP microarrays to ensure comprehensive coverage of biologically relevant regions

    Vascular surveillance by haptotactic blood platelets in inflammation and infection

    Get PDF
    Breakdown of vascular barriers is a major complication of inflammatory diseases. Anucleate platelets form blood-clots during thrombosis, but also play a crucial role in inflammation. While spatio-temporal dynamics of clot formation are well characterized, the cell-biological mechanisms of platelet recruitment to inflammatory micro-environments remain incompletely understood. Here we identify Arp2/3-dependent lamellipodia formation as a prominent morphological feature of immune-responsive platelets. Platelets use lamellipodia to scan for fibrin(ogen) deposited on the inflamed vasculature and to directionally spread, to polarize and to govern haptotactic migration along gradients of the adhesive ligand. Platelet-specific abrogation of Arp2/3 interferes with haptotactic repositioning of platelets to microlesions, thus impairing vascular sealing and provoking inflammatory microbleeding. During infection, haptotaxis promotes capture of bacteria and prevents hematogenic dissemination, rendering platelets gate-keepers of the inflamed microvasculature. Consequently, these findings identify haptotaxis as a key effector function of immune-responsive platelets

    Spatial Pattern of Standing Timber Value across the Brazilian Amazon

    Get PDF
    The Amazon is a globally important system, providing a host of ecosystem services from climate regulation to food sources. It is also home to a quarter of all global diversity. Large swathes of forest are removed each year, and many models have attempted to predict the spatial patterns of this forest loss. The spatial patterns of deforestation are determined largely by the patterns of roads that open access to frontier areas and expansion of the road network in the Amazon is largely determined by profit seeking logging activities. Here we present predictions for the spatial distribution of standing value of timber across the Amazon. We show that the patterns of timber value reflect large-scale ecological gradients, determining the spatial distribution of functional traits of trees which are, in turn, correlated with timber values. We expect that understanding the spatial patterns of timber value across the Amazon will aid predictions of logging movements and thus predictions of potential future road developments. These predictions in turn will be of great use in estimating the spatial patterns of deforestation in this globally important biome

    Candida albicans AGE3, the Ortholog of the S. cerevisiae ARF-GAP-Encoding Gene GCS1, Is Required for Hyphal Growth and Drug Resistance

    Get PDF
    BACKGROUND: Hyphal growth and multidrug resistance of C. albicans are important features for virulence and antifungal therapy of this pathogenic fungus. METHODOLOGY/PRINCIPAL FINDINGS: Here we show by phenotypic complementation analysis that the C. albicans gene AGE3 is the functional ortholog of the yeast ARF-GAP-encoding gene GCS1. The finding that the gene is required for efficient endocytosis points to an important functional role of Age3p in endosomal compartments. Most C. albicans age3Delta mutant cells which grew as cell clusters under yeast growth conditions showed defects in filamentation under different hyphal growth conditions and were almost completely disabled for invasive filamentous growth. Under hyphal growth conditions only a fraction of age3Delta cells shows a wild-type-like polarization pattern of the actin cytoskeleton and lipid rafts. Moreover, age3Delta cells were highly susceptible to several unrelated toxic compounds including antifungal azole drugs. Irrespective of the AGE3 genotype, C-terminal fusions of GFP to the drug efflux pumps Cdr1p and Mdr1p were predominantly localized in the plasma membrane. Moreover, the plasma membranes of wild-type and age3Delta mutant cells contained similar amounts of Cdr1p, Cdr2p and Mdr1p. CONCLUSIONS/SIGNIFICANCE: The results indicate that the defect in sustaining filament elongation is probably caused by the failure of age3Delta cells to polarize the actin cytoskeleton and possibly of inefficient endocytosis. The high susceptibility of age3Delta cells to azoles is not caused by inefficient transport of efflux pumps to the cell membrane. A possible role of a vacuolar defect of age3Delta cells in drug susceptibility is proposed and discussed. In conclusion, our study shows that the ARF-GAP Age3p is required for hyphal growth which is an important virulence factor of C. albicans and essential for detoxification of azole drugs which are routinely used for antifungal therapy. Thus, it represents a promising antifungal drug target
    corecore