CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Coupling angle variability in healthy and patellofemoral pain runners
Authors
Bartlett
Borg
+40 more
Brian Noehren
Cavanagh
Clark
Cohen
Crossley
David R. Mullineaux
Davis
DeLeo
Dierks
Dierks
Dierks
Dillon
Farrar
Ferber
Ferber
Grood
Hamill
Heidercheit
Heiderscheit
Kelso
Li
Maulder
Mullaney
Mullineaux
Nadeau
Newell
Noehren
Peters
Powers
Powers
Robert Shapiro
Rothman
Sainburg
Sparrow
Stergiou
Söderkvist
Timothy L. Uhl
Tommy J. Cunningham
Willson
Wu
Publication date
1 March 2014
Publisher
'Elsevier BV'
Doi
Abstract
Background Patellofemoral pain is hypothesized to result in less joint coordination variability. The ability to relate coordination variability to patellofemoral pain pathology could have many clinical uses; however, evidence to support its clinical application is lacking. The aim was to determine if vector coding's coupling angle variability, as a measure of joint coordination variability, was less for runners with patellofemoral pain than healthy controls as is commonly postulated. Methods Nineteen female recreational runners with patellofemoral pain and eleven healthy controls performed a treadmill acclimation protocol then ran at a self-selected pace for 15 min. 3-D kinematics, force plate kinetics, knee pain and rating of perceived exertion were recorded each minute. Data were selected for the: pain group at the highest pain reached (pain � 3/10) in a non-exerted state (exertion < 14/20), and; non-exerted healthy group from the eleventh minute. Coupling angle variability was calculated over several portions of the stride for six knee-ankle combinations during five non-consecutive strides. Findings 46 of 48 coupling angle variability measures were greater for the pain group, with 7 significantly greater (P <.05). Interpretation These findings oppose the theory that less coupling angle variability is indicative of a pathological coordinate state during running. Greater coupling angle variability may be characteristic of patellofemoral pain in female treadmill running when a larger threshold of pain is reached than previously observed. A predictable and directional response of coupling angle variability measures in relation to knee pathology is not yet clear and requires further investigation prior to considerations for clinical utility. © 2013 Elsevier Ltd
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1016%2Fj.clinbiome...
Last time updated on 27/02/2019