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Abstract 1 

Background: Patellofemoral pain is hypothesized to result in less joint coordination 2 

variability. The ability to relate coordination variability to patellofemoral pain pathology 3 

could have many clinical uses; however, evidence to support its clinical application is 4 

lacking.  The aim was to determine if vector coding’s coupling angle variability, as a 5 

measure of joint coordination variability, was less for runners with patellofemoral pain 6 

than healthy controls as is commonly postulated. 7 

Methods: Nineteen female recreational runners with patellofemoral pain and eleven 8 

healthy controls performed a treadmill acclimation protocol then ran at a self-selected 9 

pace for fifteen minutes.  3-D kinematics, force plate kinetics, knee pain and rating of 10 

perceived exertion were recorded each minute.   Data were selected for the: pain group 11 

at the highest pain reached (pain≥3/10) in a non-exerted state (exertion<14/20), and; 12 

non-exerted healthy group from the eleventh minute.  Coupling angle variability was 13 

calculated over several portions of the stride for six knee-ankle combinations during five 14 

non-consecutive strides. 15 

Findings: 46 of 48 coupling angle variability measures were greater for the pain group, 16 

with 7 significantly greater (p<.05).   17 

Interpretation: These findings oppose the theory that less coupling angle variability is 18 

indicative of a pathological coordinate state during running. Greater coupling angle 19 

variability may be characteristic of patellofemoral pain in female treadmill running when 20 

a larger threshold of pain is reached than previously observed.  A predictable and 21 

directional response of coupling angle variability measures in relation to knee pathology 22 

is not yet clear and requires further investigation prior to considerations for clinical utility.23 
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Introduction 1 

 Variability in joint or limb segment coordination has been suggested to be 2 

inherent within a healthy motor control strategy (Newell, et al. 1993, Stergiou, et al. 3 

2006). A commonly held interpretation of a dynamical system’s application to lower 4 

extremity orthopaedic injuries theorizes that a low amount of variation in joint or limb 5 

segment coordinative structure may increase the frequency of loading of soft tissue and 6 

eventually lead to an overuse condition and pathological state (Hamill, et al. 1999). 7 

Patellofemoral Pain (PFP) is theorized to be a condition resultant of this decrease in 8 

variability (Hamill, et al. 1999).    When originally testing this theory,  coordination 9 

variability between limb segments  was determined using the analysis technique of 10 

continuous relative phase (Kelso 1995); however, this technique has limitations in 11 

quantifying non-sinusoidal couplings and is not appropriate for most lower extremity 12 

couplings during gait (Peters, et al. 2003). Coupling angle variability (CAV) has been 13 

suggested as an alternative measurement method to observe changes in coordinative 14 

state between PFP and healthy populations (Heiderscheit, et al. 2002).  15 

 Previous literature using CAV has found little evidence to support its use as a 16 

clinically useful measure in relation to overuse injury (Ferber, et al. 2005, Heiderscheit, 17 

et al. 2002, Maulder 2011).  Investigating CAV relation to pathology, Heiderscheit et 18 

al.(Heiderscheit, et al. 2002) compared mean CAV values over the entire stride cycle for 19 

several lower extremity joint and segment couplings between PFP and healthy 20 

individuals while running at a self-selected pace. No differences between populations 21 

were found.  Further analysis using the mean CAV over smaller quintiles of stride only 22 

revealed less variability in the PFP population for the coupling of thigh-shank long axis 23 
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rotation near heel strike. The clinical relevance of this variable is unclear and should be 1 

interpreted with caution (DeLeo, et al. 2004) as angular measures in the transverse 2 

plane are the least reliable during running gait (Ferber, et al. 2002). Employing similar 3 

analysis methods when assessing the effects of orthotics on injured runners with an 4 

array of overuse injuries, introduction of an orthotic improved symptoms but no changes 5 

in CAV were observed. Minimal pain values reached (Heiderscheit, et al. 2002) and a 6 

heterogeneous injured population (Ferber, et al. 2005) were cited as possible factors for 7 

the limited results.  8 

 Previous literature studying joint kinematics of runners with PFP has consistently 9 

used a minimum pain level of 3/10 on a numeric pain rating scale as an inclusion 10 

criterion (Dierks, et al. 2011, Dierks, et al. 2008, Noehren, et al. 2011, Willson and Davis 11 

2008).  An average pain level of only 1.9 was reached in the population analyzed by 12 

Heiderscheit et al (Heiderscheit, et al. 2002). A change of at least 2 has been 13 

recognized as a clinically meaningful change in pain (Crossley, et al. 2004).   A 14 

population capable of achieving a larger amount of pain or a critical threshold of pain 15 

may be required to observe a pathological coordinative state.   Methodical issues such 16 

as foot marker set, gait normalization procedures, amount of stride cycles analyzed, 17 

small sample sizes and motion capture parameters effect the precision and accuracy of 18 

CAV measures (Mullineaux, et al. 2006) decreasing the likelihood of identifying real 19 

differences (Maulder 2011).    These limitations should be addressed to further assess 20 

the validity of CAV as a clinically useful measure for coordination variability in gait. 21 

 It has been suggested that PFP is a condition resulting from a pathological 22 

coordinate state which is characterized by a lower amount of coordination variability 23 
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than in a healthy population (Hamill, et al. 1999). CAV has been used to test this theory 1 

but there is little evidence to suggest that CAV is less in a pathological state regardless 2 

of construct.  This study aims to address identified limitations of previous literature and 3 

determine if CAV measures are less for a population with PFP than a healthy population 4 

during running at a self-selected pace; an activity related to development of PFP (Davis 5 

and Powers 2010). It was hypothesized that CAV values would be less in individuals 6 

with PFP.    7 

 8 

 9 

Methods 10 

 Twenty-one healthy (Age 25.3(4.0) yrs., Ht. 1.68(0.08) m, Wt. 60.3(7.12) kg)) and 11 

twenty injured (Age 25.8(6.0) yrs., Ht. 1.63(0.07) m, Wt. 57.0(6.35) kg) female 12 

recreational runners originally participated in the study.  To participate, all females had 13 

to be between 18 to 45 years of age and run a minimum of 16 km per week.  Subjects 14 

were included in the healthy group if they had no history of PFP and reported no lower 15 

extremity pain while running.  Subjects were included in the PFP group if they self-16 

reported a knee pain of a 3 or greater out of 10 during normal running activity using a 17 

numeric pain rating scale (Farrar, et al. 2001) and were currently diagnosed with PFP 18 

by a certified athletic trainer or licensed physical therapist after exclusion of knee pain 19 

resulting from acute injury, patellar tendonitis, Illiotibial band syndrome or meniscal 20 

pathology.  Potential subjects were excluded if they had a stated neurological disorder 21 

or tape allergy. Written informed consent was obtained prior to participation in the study, 22 

which was approved by the institute’s review board.  23 



 

6 

 

 Retro-reflective markers were attached to the subjects to model bilateral, hip, 1 

knee and ankle articulations (Figure 1).  The distal aspects of each thigh and shank 2 

were wrapped with elastic straps (ProWrap, Fabrifoam, Exton, PA, USA) and rigid body 3 

clusters were then attached to the straps with hook and loop connectors and secured 4 

using additional elastic straps (MediPro, Fabrifoam, Exton, PA, USA).  Subjects wore 5 

standardized shoes (ZoomAir; Nike, Beaverton, OR, USA) modified with windows cut 6 

out allowing adhesion of the markers directly to the skin by means of both adhesion 7 

spray and toupee tape.   8 

 Kinematic data were captured using a combination of 15 Eagle and Eagle4 9 

cameras at 300 Hz (Motion Analysis Corporation, Santa Rosa CA, USA).  A dual belted 10 

treadmill instrumented with a force plate under each belt (TM-09-PBertec, Columbus, 11 

OH, USA) was used to collect ground reaction force data at 1200 Hz.  The treadmill belt 12 

speed was operated remotely by the investigators with a velocity resolution of 0.01 m/s 13 

with each belt being 48 cm wide and 164 cm long.  A 15 point Rating of Perceived 14 

Exertion scale (RPE)(Borg 1982) was placed on a stand directly in front of the treadmill 15 

for subjects to reference for reporting level of perceived fatigue during the run.  16 

Perceived pain during the run was collected using a verbally administered numeric pain 17 

rating scale described to subjects as 0 being  “no pain” and 10 considered “worst 18 

imaginable pain” (Farrar, et al. 2001).   19 

Treadmill Protocol    20 

 A one second standing static calibration file was captured while the subjects 21 

stood in the anatomical position (Figure 1 Top).  Subjects then walked on a single belt 22 

of the treadmill for 3 minutes at 1.3 m/s to acclimate themselves to the treadmill. Speed 23 



 

7 

 

was then increased for 3 minutes to a warm-up pace (2.2-2.3 m/s) followed by 2 1 

minutes at a standard pace of 3.3 m/s.  Speed was then set at a self-selected pace 2 

where subjects felt they would not become severely fatigued over the course of the next 3 

15 minutes with speed being adjusted upon request (2.2 to 3.3 m/s). To be included in 4 

the PFP group, subjects had to reach a minimum knee pain of 3 during the treadmill 5 

protocol.  Kinematic and kinetic data were acquired for the first 10s of each minute 6 

interval.  RPE and pain measures were recorded by investigators immediately following 7 

each 10s data acquisition. 8 

Data Processing 9 

 Kinematic markers were identified using Cortex 2.0 software (Motion Analysis 10 

Corporation, Santa Rosa CA, USA).  Three-dimensional marker coordinates and force 11 

plate data were exported to Matlab v2009a (Mathworks, Natick MA, USA) for gait 12 

analysis.  A fourth-order lowpass butterworth filter with a cutoff frequency of 8 Hz was 13 

applied to kinematic data.  Force component data were filtered with a cutoff frequency 14 

of 30 Hz for the lateral forces and at 40 Hz for the vertical component. Joint coordinate 15 

systems were determined using the International Society of Biomechanics 16 

recommendations (Grood and Suntay 1983, Wu, et al. 2002). Segment orientations 17 

were determined using a singular value decomposition algorithm (Söderkvist and Wedin 18 

1993) and joint angles using an Euler rotation sequence of long axis rotation-abduction-19 

flexion for the knee and ankle.  20 

 Consistent gait points of heel-strike, mid-stance and toe-off were determined for 21 

each gait cycle for normalization. Heel-strike and toe-off were determined using the 22 

vertical component of the ground reaction force with a threshold of 50 N, and mid-23 
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stance as the transition from braking to propulsion (0 N) (Cavanagh and Lafortune 1 

1980).   Both of the two periods of stance were time normalized to 50 points and swing 2 

phase to 150 points using a fourth-order cubic spline function making a 250 point time 3 

normalized gait cycle (1 point=0.4% of stride).  The first and last gait cycle from each 10 4 

s trial was discarded to reduce interpolation effects and the first 10 gait cycles were kept 5 

for analysis. 6 

Data Reduction 7 

 One 10s trial was chosen for analysis from the 15 minute period of self-selected 8 

running pace for each individual.  For the PFP group, the trial with the highest pain 9 

value with a RPE value less than 14 was chosen. If there was more than one trial that 10 

qualified, the trial with the lowest RPE was chosen.  If there was more than one trial with 11 

the same RPE and pain value, preference was given to the earlier time point in the run 12 

to limit potential effects of exertion within the same RPE level.  The average time period 13 

of analysis for the PFP group was the eleventh minute of running at a self-selected 14 

pace; therefore, healthy data were also analyzed from the eleventh minute for those 15 

with a RPE value of less than 14.  Two subjects were excluded for missing foot markers 16 

and nine did not meet pain or fatigue inclusion criteria.  17 

 CAV values were determined using a revised vector coding technique 18 

(Heidercheit 2000, Sparrow, et al. 1987). Five non-consecutive stride cycles from each 19 

10 s trial were used for analysis.  CAV values were derived for all knee and ankle 20 

coupling combinations (Table 1) at each point in the gait cycle. The injured limb was 21 

analyzed for the PFP group and a limb was chosen by a random number generator for 22 

each of the healthy individuals to reduce systematic error.  The normalized gait cycles 23 
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were divided into quintiles each containing a functional period of stride similar to 1 

previous methods (Heiderscheit, et al. 2002) (Table 1). Mean CAV values (CAVMean) 2 

were calculated for quintiles (Q), stance, swing and the entirety of stride for each 3 

subject and then the mean and SD (mean(SD)) calculated for each group.  4 

 5 

 6 

Statistical Analysis 7 

 Independent t-tests were performed to note any differences between population 8 

demographics (height, mass, age and average distance run per week), pain, RPE, 9 

running speed and all CAV measures.  Statistical significance was set a priori (<.05) 10 

with no correction for multiple comparisons made (Rothman 1990). Effect sizes of the 11 

difference in means divided by the pooled SD for each measure were calculated 12 

(Cohen, 1998).  A Shapiro-Wilk test was used to confirm that all variables were normally 13 

distributed (>.05).  14 

Results 15 

 There were 19 PFP (Age 25.8(6.1) yrs., Ht. 1.63(0.07) m, Wt. 57.1(6.48) kg) and 16 

11 healthy (Age 26.5(13.4) yrs., Ht. 1.66(0.09) m, Wt. 58.0(5.33) kg) female subjects 17 

who qualified for analysis.  Reported distance run per week was greater for healthy 18 

(37.7(13.4) km) than PFP (21.2(9.4) km) (p=0.0008). A wider range of speeds were 19 

observed for PFP (2.2-3.1 m/s) than healthy (2.6-3 m/s) with the mean speed for the 20 

healthy population being faster (2.89(0.13) m/s) than the PFP population (2.54(0.24) 21 

m/s) (p<.0002).  Pain values were 4.3(1.3) for the PFP group. RPE levels for the healthy 22 

group (12.2(0.9)) and the PFP group (12.4(0.8)) were not significantly different (p=0.41).  23 
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 CAVMean were found to be greater in the PFP group compared to the healthy 1 

group for 46 of the 48 discrete measures (Figure 2) with only 7 being larger and 2 

significantly different (Table 2).   Effect sizes (Cohen’s d) were reported for each 3 

measure. Continuous ensemble averages of the CAV over the entire stride as 4 

measured from heel strike for each population are shown with quintiles highlighted 5 

(Figure 3). PFP CAV (solid line) were generally greater or the same throughout most 6 

portions of stride with few exceptions.  There was a brief period in Q1 of KF-AF where 7 

the ensemble CAV was larger for the healthy population despite the corresponding 8 

CAVMean measure for the entire period being significantly less. 9 

Discussion 10 

 The hypothesis that CAV values would be less in individuals in PFP was not 11 

supported.  Surprisingly, the only statistically significant differences observed showed 12 

greater CAV values in PFP than healthy individuals. These findings are contrary to the 13 

dynamical systems perspective to lower extremity overuse injuries that suggest lower 14 

CAV is indicative of a pathological coordinate state (Hamill, et al. 1999, Heiderscheit, et 15 

al. 2002).     Previous literature using similar analysis procedures for all CAVMean 16 

intervals in the KR-AI, KF-AI and KF-AF couplings have shown no differences in any 17 

CAVMean values in a PFP population that had less pain (Heiderscheit, et al. 2002). 18 

Increases in CAVMean values observed in the current study suggest that a PFP 19 

population that reports with a higher level of pain may exhibit a coordinative structure  20 

different than that observed previously (Heiderscheit, et al. 2002).  The increase in CAV 21 

observed after development of PFP may describe an adaptive coordinative structure 22 

that is compensating to a painful state to reduce stress among inflamed structures. 23 
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Reduction of knee flexion has been observed in walking gait (Nadeau, et al. 1997, 1 

Powers, et al. 1999) and running gait (Dierks, et al. 2011) in PFP populations which 2 

may be a compensatory mechanism to reduce forces to the knee (Dillon, et al. 1983). 3 

Similarly, increases in CAV involving knee flexion may help reduce loads to the knee.   4 

 The observed increases in variability may have preceded the development of 5 

PFP.    Dierks et. al. (Dierks, et al. 2011) theorized that increased variability in the lower 6 

extremity might be a result of decreased muscular control due to running in an exerted 7 

state coinciding with an observed increase in knee valgus. Increased femur internal 8 

rotation and adduction can effect peak knee valgus and internal rotation during running 9 

(Dierks, et al. 2011, Noehren, et al. 2011, Powers 2003) Similarly, the couplings of KV-10 

AF, KV-AI, KR-AF and KR-AI, each saw an increase in CAV during early stance but at a 11 

lower exertion state than previously observed (Dierks, et al. 2011). This suggests that 12 

increased variability resulting from femoral adduction and internal rotation may be a 13 

result of decreased muscular control inherent in a PFP population leading to a painful 14 

state.  The nature of this investigation unfortunately cannot determine if the increase in 15 

CAV is the result of pathology or precedes development which limits this interpretation 16 

(Bartlett, et al. 2007).     17 

 This is the first study to document significantly increased CAV for a pathological 18 

population to the best of the authors’ knowledge, as such; clinical interpretation should 19 

be viewed with caution. It is plausible that increases in CAV may just be a result of 20 

mathematical artifact as a result of the simple statistical methods employed or a 21 

clustering of data capture points in regions where little joint motion occurs; typical near 22 

heel-strike (Heiderscheit, et al. 2002). Chosen locations of quintiles used to create 23 
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discrete measures from clearly continuous and somewhat volatile CAV curves may 1 

have affected the results. For example, if quintiles were chosen to begin at heel strike 2 

rather than encompass this event, the brief increase observed within Q1 of KF-AF 3 

(Figure 3) for the healthy population may have been found to be significantly greater if 4 

located in a separate quintile than the PFP local maxima. On the other hand, this would 5 

likely have still resulted in significantly greater variability for the PFP group after heel 6 

strike. It is, however; difficult to ignore that not only were there no CAVMean values that 7 

were significantly less in PFP; 85% of the comparisons were observed to be larger in 8 

PFP although most of these observations (77%) were only slightly greater and 9 

statistically negligible. It may be more appropriate to shift focus to the preponderance of 10 

evidence observed in this study that shows no statistical differences between 11 

populations.   The small differences observed seem to agree with, rather than contrast 12 

previous findings. In the first proposal of the dynamical systems perspective to overuse 13 

injuries, there is no statistical evidence to support that a PFP population should have 14 

less variability than healthy counterparts. Of the discrete variables analyzed in that 15 

study, 41% were greater in the PFP population with the largest reported difference 16 

actually being four times greater in the PFP population than healthy population (Hamill, 17 

et al. 1999). Interpretations or explanations of these larger observed values were not 18 

discussed.  Of the four CAV measures Ferber et al. used to compare symptomatic 19 

runners to controls, none were statistically different (p ranges 0.96 to 0.67) and mean 20 

differences between populations only ranged between 0.08° and 2.22°, respectively 21 

(Ferber, et al. 2005). Observation of significant differences in CAV measures between 22 

PFP and healthy populations seem to be a rarity rather than the norm. The small 23 
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amount of evidence to support any particular direction for CAV measures in this 1 

construct even seem to conflict.  These seemingly conflicting results may, however; 2 

coincide with the perspective that there is an optimal amount of variability in running 3 

gait; where extreme amounts, too much or too little, are detrimental to a biological 4 

system(Stergiou, et al. 2006) and can lead to an overuse condition in the lower 5 

extremity.   6 

 Slight methodical differences and dependent measures among investigations 7 

may have led to different results or a lack of significant findings in support of previous 8 

theory. For example, only intralimb knee-ankle joint couplings were analyzed in this 9 

study from multitudes of possible segment combinations making direct comparison to 10 

previous literature difficult. Further, regions chosen for this analysis are thought to be 11 

critically important in the study of movement variability, consistent with previous 12 

literature (Clark and Phillips 1993) and accompanied with relative variability increases 13 

(Sainburg, et al. 1995), particularly near heel-strike (Heiderscheit, et al. 2002), however; 14 

there are other possible CAV measures that may serve as alternative measures than 15 

those presented here. Participants wearing their own shoes may have influenced the 16 

results, although the experimental control of using standardized shoes that allowed for 17 

the application of markers directly to the foot was preferred to provide a better measure 18 

of distal segment movement and improve comparisons across our groups (Noehren, et 19 

al. 2011). This study surprisingly observed results contrary to a commonly held theory 20 

but also, unfortunately, did not observe as many differences as anticipated. To the 21 

knowledge of these authors, the clinical precision limits of CAV measures have not yet 22 

been defined to evaluate the clinical utility of CAV for linear analyses (Mullaney, et al. 23 
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2010). The use of nonlinear statistical methods to analyze these nonlinear dynamical 1 

systems may be more appropriate (Stergiou, et al. 2006) and has not been explored 2 

within the gait literature using CAV as a measure of interest.  Further exploration of CAV 3 

measures utilizing nonlinear analysis methods may aid in our clinical interpretation and 4 

understanding of the relationship between variability and pathology in the construct of 5 

gait and these reported findings.     6 

 7 

Conclusion 8 

 Recent debate has arisen to clarify differences in findings for similar analysis 9 

methods when interpreting PFP development during prolonged running in the context of 10 

dynamical systems (Dierks 2011, Li 2011).  The proposed etiology that PFP symptoms 11 

are a manifest of less joint coordination variability and observable by CAV measures 12 

requires more scrutiny. Although theoretically sound, there is little supporting evidence 13 

to suggest less movement variability is indicative of overuse pathology as it relates to 14 

running.  This can also be said for more movement variability. The clinical utility and 15 

applicability of CAV in running analysis is not yet understood or necessarily supported. 16 

Future research should concentrate on thoroughly exploring the capability of CAV as a 17 

clinically useful measure prior to further interpretation.  18 
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Table 1 Common abbreviations and definitions used within the text and tables grouped by Knee-1 

Ankle coupling relationship and coupling angle variability (CAV) intervals.  2 

Joint Coupling Definition 

KV-AI Knee Valgus/Varus coupled with Ankle Inversion/Eversion 

KV-AF Knee Valgus/Varus coupled with Ankle Plantar/Dorsi Flexion 

KF-AI Knee Flexion/Extension coupled with Ankle Inversion/Eversion 

KF-AF Knee Flexion/Extension coupled with Ankle Plantar/Dorsi Flexion 

KR-AI Knee Internal/External Rotation coupled with Ankle 

Inversion/Eversion 

KR-AF Knee Internal/External Rotation coupled with Ankle Plantar/Dorsi 

Flexion 

CAV Measure  

CAV 

Coupling Angle Variability. Variation within a set of 5 vector coded, 

non-consecutive gait cycles for a Knee-Ankle coupling relationship. 

CAV is a continuous measure for every point in the gait cycle. Units 

are in degrees. 

CAVMean  Mean CAV over discrete intervals (Q, stance, swing) of stride. Each 

quintile contains a functional period of stride shown in parentheses.  

Quintiles (Q) Q1: -10 to 10% (heel-strike), Q2: 10-30% (mid-stance),  

Q3: 30 to 50% (toe-off), Q4: 50 to 70% (swing acceleration),  

Q5: 70 to 90% (swing deceleration) 

Stance 0 to 40%  

Swing     40 to100% 

Stride 0 to 100% 

 3 
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Table 2 Significant differences observed for mean Coupling Angle Variability values (mean (SD)) 

within quintiles (Q1-5) of stride, the entirety of stride or stance phase for runners with 

Patellofemoral Pain (PFP) and healthy controls. Couplings include: Knee (K) Flexion (F), Rotation 

(R) and Valgus (V) – Ankle (A): Flexion (F) and Inversion (I).  

Interval  Coupling PFP (°),n=19 Healthy (°),n=11 P value Effect Size (Cohen’s d) 

Q1  KF-AF 7.9(2.0) 6.1(1.8) .020 .97 

Q2  KR-AI 16.0(8.9) 10.1(4.0) .049 .80 

Q2  KR-AF 10.3(4.6) 7.0(2.5) .038 .85 

Q4  KV-AF 10.6(5.0) 6.2(1.9) .010 1.09 

Q5  KV-AI 23.5(9.6) 14.6(5.0) .008 1.12 

Stance  KV-AF 6.9(2.4) 4.5(1.5) .008 1.21 

Stride  KV-AI 14.8(4.5) 11.6(2.2) .031 .89 

 1 
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Figure 1 Markerset used during a static calibration in anatomical position (Top).  Only 1 

bilateral markers on the lateral aspects of the 5th metacarpal head, base, navicular and 2 

both the lateral and medial aspects of the calcaneus were used to model foot 3 

movement.  Windows are cut out of the shoes allowing markers to be adhered directly 4 

to the foot (Bottom).  Rigid clusters were secured to the distal posterior-lateral aspects 5 

of each segment to model thigh and shank movement. 6 

 7 

Figure 2 Discrete mean Coupling Angle Variability (CAV, mean(SD)) values within each 8 

quintile (Q1-5) of stride, the entirety of stride, stance and swing phase at a self-selected 9 

running pace for six Knee-Ankle joint coupling combinations for female runners with 10 

patellofemoral pain (PFP) and healthy controls.  Significant difference between 11 

populations denoted at P<0.05 (*) and effect size (Cohen’s d) is reported for each 12 

measure. Couplings include: Knee (K) Flexion (F), Rotation (R) and Valgus (V) – Ankle 13 

(A): Flexion (F) and Inversion (I). 14 

 15 

Figure 3 Continuous ensemble averaged Coupling Angle Variability (CAV) curves for 16 

Healthy and Patellofemoral Pain (PFP) populations for six Knee-Ankle coupling 17 

combinations.  Even quintiles of stride are highlighted starting at Heel-Strike (0%). 18 

Significant differences between populations at P<.05 for quintiles are indicated (*). 19 

Couplings include: Knee (K) Flexion (F), Rotation (R) and Valgus (V) – Ankle (A): 20 

Flexion (F) and Inversion (I). 21 
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