11 research outputs found

    Monte Carlo simulations of the n TOF lead spallation target with the Geant4 toolkit: A benchmark study

    Get PDF
    Monte Carlo (MC) simulations are an essential tool to determine fundamental features of a neutron beam, such as the neutron flux or the Âż -ray background, that sometimes can not be measured or at least not in every position or energy range. Until recently, the most widely used MC codes in this field had been MCNPX and FLUKA. However, the Geant4 toolkit has also become a competitive code for the transport of neutrons after the development of the native Geant4 format for neutron data libraries, G4NDL. In this context, we present the Geant4 simulations of the neutron spallation target of the n TOF facility at CERN, done with version 10.1.1 of the toolkit. The first goal was the validation of the intra-nuclear cascade models implemented in the code using, as benchmark, the characteristics of the neutron beam measured at the first experimental area (EAR1), especially the neutron flux and energy distribution, and the time distribution of neutrons of equal kinetic energy, the so-called Resolution Function. The second goal was the development of aMonte Carlo tool aimed to provide useful calculations for both the analysis and planning of the upcoming measurements at the new experimental area (EAR2) of the facility.Postprint (published version

    Fission Fragment Angular Distribution measurements of 235U and 238U at CERN n-TOF facility

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited. EJP Web of Conferences 111, 10002 (2016). DOI: http://dx.doi.org/10.1051/epjconf/201611110002. © 2016 The Authors. Published by EDP Sciences.Neutron-induced fission cross sections of 238U and 235U are used as standards in the fast neutron region up to 200 MeV. A high accuracy of the standards is relevant to experimentally determine other neutron reaction cross sections. Therefore, the detection effciency should be corrected by using the angular distribution of the fission fragments (FFAD), which are barely known above 20 MeV. In addition, the angular distribution of the fragments produced in the fission of highly excited and deformed nuclei is an important observable to investigate the nuclear fission process. In order to measure the FFAD of neutron-induced reactions, a fission detection setup based on parallel-plate avalanche counters (PPACs) has been developed and successfully used at the CERN-n-TOF facility. In this work, we present the preliminary results on the analysis of new 235U(n,f) and 238U(n,f) data in the extended energy range up to 200 MeV compared to the existing experimental data

    The 236^{236}U neutron capture cross-section measured at the n_TOF CERN facility

    Get PDF

    The 236^{236}U neutron capture cross-section measured at the n_TOF CERN facility

    Get PDF
    The 236U isotope plays an important role in nuclear systems, both for future and currently operating ones. The actual knowledge of the capture reaction of this isotope is satisfactory in the thermal region, but it is considered insufficient for Fast Reactor and ADS applications. For this reason the 236U(n, γ) reaction cross-section has been measured for the first time in the whole energy region from thermal energy up to 1 MeV at the n_TOF facility with two different detection systems: an array of C6D6 detectors, employing the total energy deposited method, and a FX1 total absorption calorimeter (TAC), made of 40 BaF2 crystals. The two n_TOF data sets agree with each other within the statistical uncertainty in the Resolved Resonance Region up to 800 eV, while sizable differences (up to ≃ 20%) are found relative to the current evaluated data libraries. Moreover two new resonances have been found in the n_TOF data. In the Unresolved Resonance Region up to 200 keV, the n_TOF results show a reasonable agreement with previous measurements and evaluated data

    Measurement of the 241^{241}Am neutron capture cross section at the n_TOF facility at CERN

    Get PDF

    High precision measurement of the radiative capture cross section of 238^{238}U at the n_TOF CERN facility

    Get PDF
    The importance of improving the accuracy on the capture cross-section of 238U has been addressed by the Nuclear Energy Agency, since its uncertainty significantly affects the uncertainties of key design parameters for both fast and thermal nuclear reactors. Within the 7th framework programme ANDES of the European Commission three different measurements have been carried out with the aim of providing the 238U(n,γ) cross-section with an accuracy which varies from 1 to 5%, depending on the energy range. Hereby the final results of the measurement performed at the n_TOF CERN facility in a wide energy range from 1 eV to 700 keV will be presented

    ⁷Be(n,α) and ⁷Be(n,p) cross-section measurement for the cosmological lithium problem at the n-TOF facility at CERN

    Get PDF

    Monte carlo simulations of the n_TOF lead spallation target with the Geant4 toolkit : A benchmark study

    Get PDF

    7Be(n,alpha) and 7Be(n,p) cross-section measurement for the cosmological lithium problem at the n TOF facility at CERN

    Get PDF
    The Cosmological Lithium Problem refers to the large discrepancy between the abundance of primordial 7Li predicted by the standard theory of Big Bang Nucleosynthesis and the value inferred from the so-called “Spite plateau” in halo stars. A possible explanation for this longstanding puzzle in Nuclear Astrophysics is related to the incorrect estimation of the destruction rate of 7Be, which is responsible for the production of 95% of primordial Lithium. While charged-particle induced reactions have mostly been ruled out, data on the 7Be(n,alpha) and 7Be(n,p) reactions are scarce or completely missing, so that a large uncertainty still affects the abundance of 7Li predicted by the standard theory of Big Bang Nucleosynthesis. Both reactions have been measured at the n TOF facility at CERN, providing for the first time data in a wide neutron energy range.Postprint (published version

    The n_TOF facility: Neutron beams for challenging future measurements at CERN

    Get PDF
    International audienceThe CERN n_TOF neutron beam facility is characterized by a very high instantaneous neutron flux, excellent TOF resolution at the 185 m long flight path (EAR-1), low intrinsic background and coverage of a wide range of neutron energies, from thermal to a few GeV. These characteristics provide a unique possibility to perform high-accuracy measurements of neutron-induced reaction cross-sections and angular distributions of interest for fundamental and applied Nuclear Physics. Since 2001, the n_TOF Collaboration has collected a wealth of high quality nuclear data relevant for nuclear astrophysics, nuclear reactor technology, nuclear medicine, etc. The overall efficiency of the experimental program and the range of possible measurements has been expanded with the construction of a second experimental area (EAR-2), located 20 m on the vertical of the n_TOF spallation target. This upgrade, which benefits from a neutron flux 30 times higher than in EAR-1, provides a substantial extension in measurement capabilities, opening the possibility to collect data on neutron cross-section of isotopes with short half-lives or available in very small amounts. This contribution will outline the main characteristics of the n_TOF facility, with special emphasis on the new experimental area. In particular, we will discuss the innovative features of the EAR-2 neutron beam that make possible to perform very challenging measurements on short-lived radioisotopes or sub-mg samples, out of reach up to now at other neutron facilities around the world. Finally, the future perspectives of the facility will be presented
    corecore