26 research outputs found

    The Roles of Glutathione Peroxidases during Embryo Development

    Get PDF
    Embryo development relies on the complex interplay of the basic cellular processes including proliferation, differentiation, and apoptotic cell death. Precise regulation of these events is the basis for the establishment of embryonic structures and the organ development. Beginning with fertilization of the oocyte until delivery the developing embryo encounters changing environmental conditions such as varying levels of oxygen, which can give rise to reactive oxygen species (ROS). These challenges are met by the embryo with metabolic adaptations and by an array of anti-oxidative mechanisms. ROS can be deleterious by modifying biological molecules including lipids, proteins, and nucleic acids and may induce abnormal development or even embryonic lethality. On the other hand ROS are vital players of various signaling cascades that affect the balance between cell growth, differentiation, and death. An imbalance or dysregulation of these biological processes may generate cells with abnormal growth and is therefore potentially teratogenic and tumorigenic. Thus, a precise balance between processes generating ROS and those decomposing ROS is critical for normal embryo development. One tier of the cellular protective system against ROS constitutes the family of selenium-dependent glutathione peroxidases (GPx). These enzymes reduce hydroperoxides to the corresponding alcohols at the expense of reduced glutathione. Of special interest within this protein family is the moonlighting enzyme glutathione peroxidase 4 (Gpx4). This enzyme is a scavenger of lipophilic hydroperoxides on one hand, but on the other hand can be transformed into an enzymatically inactive cellular structural component. GPx4 deficiency – in contrast to all other GPx family members – leads to abnormal embryo development and finally produces a lethal phenotype in mice. This review is aimed at summarizing the current knowledge on GPx isoforms during embryo development and tumor development with an emphasis on GPx4

    Molecular biology of glutathione peroxidase 4: from genomic structure to developmental expression and neural function

    Get PDF
    Selenoproteins have been recognized as modulators of brain function and signaling. Phospholipid hydroperoxide glutathione peroxidase (GPx4/PHGPx) is a unique member of the selenium-dependent glutathione peroxidases in mammals with a pivotal role in brain development and function. GPx4 exists as a cytosolic, mitochondrial, and nuclear isoform derived from a single gene. In mice, the GPx4 gene is located on chromosome 10 in close proximity to a functional retrotransposome that is expressed under the control of captured regulatory elements. Elucidation of crystallographic data uncovered structural peculiarities of GPx4 that provide the molecular basis for its unique enzymatic properties and substrate specificity. Monomeric GPx4 is multifunctional: it acts as a reducing enzyme of peroxidized phospholipids and thiols and as a structural protein. Transcriptional regulation of the different GPx4 isoforms requires several isoform-specific cis-regulatory sequences and trans-activating factors. Cytosolic and mitochondrial GPx4 are the major isoforms exclusively expressed by neurons in the developing brain. In stark contrast, following brain trauma, GPx4 is specifically upregulated in non-neuronal cells, i.e., reactive astrocytes. Molecular approaches to genetic modification in mice have revealed an essential and isoform-specific function for GPx4 in development and disease. Here we review recent findings on GPx4 with emphasis on its molecular structure and function and consider potential mechanisms that underlie neural development and neuropathological condition

    Male guanine-rich RNA sequence binding factor 1 knockout mice (Grsf1−/−) gain less body weight during adolescence and adulthood

    Get PDF
    The guanine-rich RNA sequence binding factor 1 (GRSF1) is an RNA-binding protein of the heterogenous nuclear ribonucleoprotein H/F (hnRNP H/F) family that binds to guanine-rich RNA sequences forming G-quadruplex structures. In mice and humans there are single copy GRSF1 genes, but multiple transcripts have been reported. GRSF1 has been implicated in a number of physiological processes (e.g. embryogenesis, erythropoiesis, redox homeostasis, RNA metabolism) but also in the pathogenesis of viral infections and hyperproliferative diseases. These postulated biological functions of GRSF1 originate from in vitro studies rather than complex in vivo systems. To assess the in vivo relevance of these findings, we created systemic Grsf1(-/-) knockout mice lacking exons 4 and 5 of the Grsf1 gene and compared the basic functional characteristics of these animals with those of wildtype controls. We found that Grsf1-deficient mice are viable, reproduce normally and have fully functional hematopoietic systems. Up to an age of 15 weeks they develop normally but when male individuals grow older, they gain significantly less body weight than wildtype controls in a gender-specific manner. Profiling Grsf1 mRNA expression in different mouse tissues we observed high concentrations in testis. Comparison of the testicular transcriptomes of Grsf1(-/-) mice and wildtype controls confirmed near complete knock-out of Grsf1 but otherwise subtle differences in transcript regulations. Comparative testicular proteome analyses suggested perturbed mitochondrial respiration in Grsf1(-/-) mice which may be related to compromised expression of complex I proteins. Here we present, for the first time, an in vivo complete Grsf1 knock-out mouse with comprehensive physiological, transcriptomic and proteomic characterization to improve our understanding of the GRSF1 beyond in vitro cell culture models

    Monoamine oxidase-A promotes protective autophagy in human SH-SY5Y neuroblastoma cells through Bcl-2 phosphorylation.

    Get PDF
    Monoamine oxidases (MAOs) are located on the outer mitochondrial membrane and are drug targets for the treatment of neurological disorders. MAOs control the levels of neurotransmitters in the brain via oxidative deamination and contribute to reactive oxygen species (ROS) generation through their catalytic by-product H2O2. Increased ROS levels may modulate mitochondrial function and mitochondrial dysfunction is implicated in a vast array of disorders. However, the downstream effects of MAO-A mediated ROS production in a neuronal model has not been previously investigated. In this study, using MAO-A overexpressing neuroblastoma cells, we demonstrate that higher levels of MAO-A protein/activity results in increased basal ROS levels with associated increase in protein oxidation. Increased MAO-A levels result in increased Lysine-63 linked ubiquitination of mitochondrial proteins and promotes autophagy through Bcl-2 phosphorylation. Furthermore, ROS generated locally on the mitochondrial outer membrane by MAO-A promotes phosphorylation of dynamin-1-like protein, leading to mitochondrial fragmentation and clearance without complete loss of mitochondrial membrane potential. Cellular ATP levels are maintained following MAO-A overexpression and complex IV activity/protein levels increased, revealing a close relationship between MAO-A levels and mitochondrial function. Finally, the downstream effects of increased MAO-A levels are dependent on the availability of amine substrates and in the presence of exogenous substrate, cell viability is dramatically reduced. This study shows for the first time that MAO-A generated ROS is involved in quality control signalling, and increase in MAO-A protein levels leads to a protective cellular response in order to mediate removal of damaged macromolecules/organelles, but substrate availability may ultimately determine cell fate. The latter is particularly important in conditions such as Parkinson's disease, where a dopamine precursor is used to treat disease symptoms and highlights that the fate of MAO-A containing dopaminergic neurons may depend on both MAO-A levels and catecholamine substrate availability

    Grsf1-induced translation of the SNARE protein use1 is required for expansion of the erythroid compartment

    Get PDF
    Induction of cell proliferation requires a concomitant increase in the synthesis of glycosylated lipids and membrane proteins, which is dependent on ER-Golgi protein transport by CopII-coated vesicles. In this process, retrograde transport of ER resident proteins from the Golgi is crucial to maintain ER integrity, and allows for anterograde transport to continue. We previously showed that expression of the CopI specific SNARE protein Use1 (Unusual SNARE in the ER 1) is tightly regulated by eIF4E-dependent translation initiation of Use1 mRNA. Here we investigate the mechanism that controls Use1 mRNA translation. The 5'UTR of mouse Use1 contains a 156 nt alternatively spliced intron. The non-spliced form is the predominantly translated mRNA. The alternatively spliced sequence contains G-repeats that bind the RNA-binding protein G-rich sequence binding factor 1 (Grsf1) in RNA band shift assays. The presence of these G-repeats rendered translation of reporter constructs dependent on the Grsf1 concentration. Down regulation of either Grsf1 or Use1 abrogated expansion of erythroblasts. The 5'UTR of human Use1 lacks the splice donor site, but contains an additional upstream open reading frame in close proximity of the translation start site. Similar to mouse Use1, also the human 5'UTR contains G-repeats in front of the start codon. In conclusion, Grsf1 controls translation of the SNARE protein Use1, possibly by positioning the 40S ribosomal subunit and associated translation factors in front of the translation start site

    Transient Receptor Potential Channel Polymorphisms Are Associated with the Somatosensory Function in Neuropathic Pain Patients

    Get PDF
    Transient receptor potential channels are important mediators of thermal and mechanical stimuli and play an important role in neuropathic pain. The contribution of hereditary variants in the genes of transient receptor potential channels to neuropathic pain is unknown. We investigated the frequency of transient receptor potential ankyrin 1, transient receptor potential melastin 8 and transient receptor potential vanilloid 1 single nucleotide polymorphisms and their impact on somatosensory abnormalities in neuropathic pain patients. Within the German Research Network on Neuropathic Pain (Deutscher Forscbungsverbund Neuropathischer Schmerz) 371 neuropathic pain patients were phenotypically characterized using standardized quantitative sensory testing. Pyrosequencing was employed to determine a total of eleven single nucleotide polymorphisms in transient receptor potential channel genes of the neuropathic pain patients and a cohort of 253 German healthy volunteers. Associations of quantitative sensory testing parameters and single nucleotide polymorphisms between and within groups and subgroups, based on sensory phenotypes, were analyzed. Single nucleotide polymorphisms frequencies did not differ between both the cohorts. However, in neuropathic pain patients transient receptor potential ankyrin 1 710G>A (rs920829, E179K) was associated with the presence of paradoxical heat sensation (p = 0.03), and transient receptor potential vanilloid 1 1911A>G (rs8065080, I585V) with cold hypoalgesia (p = 0.0035). Two main subgroups characterized by preserved (1) and impaired (2) sensory function were identified. In subgroup 1 transient receptor potential vanilloid 1 1911A>G led to significantly less heat hyperalgesia, pinprick hyperalgesia and mechanical hypaesthesia (p = 0.006, p = 0.005 and p<0.001) and transient receptor potential vanilloid 1 1103C>G (rs222747, M315I) to cold hypaesthesia (p = 0.002), but there was absence of associations in subgroup 2. In this study we found no evidence that genetic variants of transient receptor potential channels are involved in the expression of neuropathic pain, but transient receptor potential channel polymorphisms contributed significantly to the somatosensory abnormalities of neuropathic pain patients

    Untersuchungen zur Expressionsregulation der Phospholipid-Hydroperoxid Glutathion-Peroxidase

    Get PDF
    Die Phospholipid-Hydroperoxid Glutathion-Peroxidase (phGPx) ist ein monomeres Selenoprotein, welches innerhalb der Familie der Glutathion-Peroxidasen aufgrund seiner breiten SubstratspezifitĂ€t und der FĂ€higkeit Proteinthiole zu modifizieren eine Sonderstellung einnimmt. Vom Gen der phGPx werden nach heutigem Kenntnisstand drei verschiedene Protein-Isoformen gebildet. Die mitochondriale Isoform enthĂ€lt am N-Terminus ein mitochondriales Insertionssignal und wird bevorzugt im Testis exprimiert. Von einem im Leserahmen stromabwĂ€rts liegenden Startkodon wird die kĂŒrzere, ubiquitĂ€r exprimierte zytosolische Isoform synthetisiert. Eine dritte phGPx-Isoform besitzt eine N-terminale nukleĂ€re Lokalisationssequenz (kodiert von einem alternativen Exon 1) und wird vornehmlich in den Kernen post-meiotischer Zellen der Spermatogenese gefunden. Aufgabe dieser Arbeit war es, die molekularen Mechanismen zu untersuchen, die am Zustandekommen des vielfĂ€ltigen Expressionsmusters der phGPx-Isoformen beteiligt sind. Im ersten Teil der Arbeit wurden transkriptionelle Regulationsmechanismen der phGPx-Expression untersucht. Im proximalen Promotorbereich (-100 bp – +228 bp) des phGPx-Gens wurden unter in vitro (Supershift-Assay) und in vivo (Chromatin-ImmunoprĂ€zipitation) Bedingungen die Transkriptionsfaktoren Sp1 und NF-Y identifiziert, die an drei GC-reiche Motive beziehungsweise zwei inverse CCAAT-Boxen binden. DarĂŒber hinaus konnten in kompetetiven Gelshift-Assays im proximalen Promotorbereich zwei Bindungssequenzen identifiziert werden, die von Faktoren der Smad-Familie gebunden werden. Funktionelle in vitro Promotorstudien mit mutierten Promotorkonstrukten zeigten, dass die Mutagenesen der Sp1- und NF-Y Bindestellen einen starken Einfluss auf die ReportergenaktivitĂ€t hatten. Im zweiten Teil der Arbeit wurden durch Untersuchungen von Protein-RNA-Interaktionen post-transkriptionelle Mechanismen der Expressionsregulation studiert. Mit Hilfe des in vivo Ansatzes des Hefe Drei-Hybrid Systems wurde der Guanin-reiche Sequenz bindende Faktor 1 (GRSF1) identifiziert, der in der 5’-untranslatierte Region der mitochondrialen phGPx-mRNA bindet. In RNA Gelshift-Assays wurde die SpezifitĂ€t dieser Interaktion bestĂ€tigt und nĂ€her charakterisiert. Schließlich wurden fĂŒr GRSF1 und die phGPx Expressionsprofile in murinen Gewebe erstellt sowie die zeitabhĂ€ngige Expression beider Proteine wĂ€hrend der Embryogenese verfolgt. Die auffĂ€llig Ă€hnlichen Expressionsmuster lassen Ă€hnliche Regulationsmechanismen vermuten. Die in dieser Arbeit identifizierten trans-regulatorischen Proteine Sp1, NF-Y, Smad und GRSF1 sollten an der differentiellen Expression der phGPx-Isoformen beteiligt sein.The Phospholipid Hydroperoxide Glutathione Peroxidase (phGPx) is a monomeric selenoprotein that is unique in the family of Glutathione Peroxidases due to its low substrate specificity and its ability to oxidise protein thiols. Three different isoforms are known to derive from one common gene. The mitochondrial Isoform contains an N-terminal mitochondrial insertion sequence and is preferentially expressed in postpubertal testis. The shorter, ubiquitously expressed, cytosolic isoform is expressed from an in-frame start codon. A third isoform contains an N-terminal nuclear localization signal coded for by an alternative exon 1 and is preferentially expressed in the nuclei of post-meiotic spermatides. The aim of the present study is to investigate the molecular mechanisms leading to the different isoforms and causing their tissue specific expression pattern. In the first part of this work transcriptional regulatory mechanisms will be analysed. Within the proximal promoter region (-100 to +228 bp) of the phGPx gene the transcription factors SP1 and NF-Y were identified to bind to three GC-boxes and two CCAAT-boxes respectively using in vitro methods (Supershift Assays) and in vivo methods (Chromatine immunoprecipitation). Moreover, performing competitive gel shift assays two binding elements for the smad family of transcription factors could be identified. Functional in vitro reporter gene assays provided evidence that the mutagenesis of the binding sequences for NF-Y and Sp1 has a strong impact on promoter activity. In the second part of this work post-transcriptional events in the expression regulation of the phGPx were analysed on the basis of protein/RNA interactions. Applying the in vivo approach of the yeast three hybrid system the Guanin-riche sequence binding factor 1 (GRSF1) could be identified binding to the 5’-untranslated region of the mitochondrial phGPx messenger. RNA mobility shift assays were performed to further characterize the specificity of this protein/RNA interaction. Eventually, the tissue distribution of GRSF1 and phGPx was studied in murine tissues and their expression kinetics were followed during murine embryogenesis. The obvious parallel expression kinetics for mitochondrial phGPx and GRSF1 suggest common regulatory mechanisms for these two genes. All the identified trans-regulatory elements are very likely to be involved in the differential expression regulation of the phGPx isoforms
    corecore