67 research outputs found

    Community annotation and bioinformatics workforce development in concert—Little Skate Genome Annotation Workshops and Jamborees

    Get PDF
    Recent advances in high-throughput DNA sequencing technologies have equipped biologists with a powerful new set of tools for advancing research goals. The resulting flood of sequence data has made it critically important to train the next generation of scientists to handle the inherent bioinformatic challenges. The North East Bioinformatics Collaborative (NEBC) is undertaking the genome sequencing and annotation of the little skate (Leucoraja erinacea) to promote advancement of bioinformatics infrastructure in our region, with an emphasis on practical education to create a critical mass of informatically savvy life scientists. In support of the Little Skate Genome Project, the NEBC members have developed several annotation workshops and jamborees to provide training in genome sequencing, annotation and analysis. Acting as a nexus for both curation activities and dissemination of project data, a project web portal, SkateBase (http://skatebase.org) has been developed. As a case study to illustrate effective coupling of community annotation with workforce development, we report the results of the Mitochondrial Genome Annotation Jamborees organized to annotate the first completely assembled element of the Little Skate Genome Project, as a culminating experience for participants from our three prior annotation workshops. We are applying the physical/virtual infrastructure and lessons learned from these activities to enhance and streamline the genome annotation workflow, as we look toward our continuing efforts for larger-scale functional and structural community annotation of the L. erinacea genome

    A genomic catalog of Earth’s microbiomes

    Get PDF
    The reconstruction of bacterial and archaeal genomes from shotgun metagenomes has enabled insights into the ecology and evolution of environmental and host-associated microbiomes. Here we applied this approach to >10,000 metagenomes collected from diverse habitats covering all of Earth’s continents and oceans, including metagenomes from human and animal hosts, engineered environments, and natural and agricultural soils, to capture extant microbial, metabolic and functional potential. This comprehensive catalog includes 52,515 metagenome-assembled genomes representing 12,556 novel candidate species-level operational taxonomic units spanning 135 phyla. The catalog expands the known phylogenetic diversity of bacteria and archaea by 44% and is broadly available for streamlined comparative analyses, interactive exploration, metabolic modeling and bulk download. We demonstrate the utility of this collection for understanding secondary-metabolite biosynthetic potential and for resolving thousands of new host linkages to uncultivated viruses. This resource underscores the value of genome-centric approaches for revealing genomic properties of uncultivated microorganisms that affect ecosystem processes

    Identification of a starter unit acyl-carrier protein transacylase domain in an iterative type I polyketide synthase

    No full text
    Polyketides are a class of natural products that exhibit a wide range of functional and structural diversity. They include antibiotics, immunosuppressants, antifungals, antihypercholesterolemics, and cytotoxins. Polyketide synthases (PKSs) use chemistry similar to fatty acid synthases (FASs), although building block variation and differing extents of reduction of the growing polyketide chain underlie their biosynthetic versatility. In contrast to the well studied sequential modular type I PKSs, less is known about how the iterative type I PKSs carry out and control chain initiation, elongation, folding, and cyclization during polyketide processing. Domain structure analysis of a group of related fungal, nonreducing PKSs has revealed well defined N-terminal domains longer than commonly seen for FASs and modular PKSs. Predicted structure of this domain disclosed a region similar to malonyl-CoA:acyl-carrier protein (ACP) transacylases (MATs). MATs play a key role transferring precursor CoA thioesters from solution onto FASs and PKSs for chain elongation. On the basis of site-directed mutagenesis, radiolabeling, and kinetics experiments carried out with individual domains of the norsolorinic acid PKS, we propose that the N-terminal domain is a starter unit:ACP transacylase (SAT domain) that selects a C(6) fatty acid from a dedicated yeast-like FAS and transfers this unit onto the PKS ACP, leading to the production of the aflatoxin precursor, norsolorinic acid. These findings could indicate a much broader role for SAT domains in starter unit selection among nonreducing iterative, fungal PKSs, and they provide a biochemical rationale for the classical acetyl “starter unit effect.
    • …
    corecore