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Mitja Zdouc 1, Zheng Zhong 40, Jérôme Collemare 3, Roger G. Linington 7,
Tilmann Weber 2,* and Marnix H. Medema 1,14,*

1Bioinformatics Group, Wageningen University, Droevendaalsesteeg, 6708 PB Wageningen, The Netherlands, 2The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark,
3Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands, 4Scripps Institution of
Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0212, USA, 5Department
of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA, 6Department of Chemistry,
University of Manitoba, 66 Chancellors Cir, Winnipeg, MB R3T 2N2, Canada, 7Department of Chemistry, Simon
Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada, 8Unnatural Products, 2161
Delaware Ave. Suite A, Santa Cruz, CA 95060, USA, 9Centro de Ciencias Matemáticas UNAM, Morelia, México,
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ABSTRACT

With an ever-increasing amount of (meta)genomic
data being deposited in sequence databases,
(meta)genome mining for natural product biosyn-
thetic pathways occupies a critical role in the dis-
covery of novel pharmaceutical drugs, crop protec-
tion agents and biomaterials. The genes that encode
these pathways are often organised into biosynthetic
gene clusters (BGCs). In 2015, we defined the Mini-
mum Information about a Biosynthetic Gene cluster
(MIBiG): a standardised data format that describes
the minimally required information to uniquely char-
acterise a BGC. We simultaneously constructed an
accompanying online database of BGCs, which has
since been widely used by the community as a ref-
erence dataset for BGCs and was expanded to 2021
entries in 2019 (MIBiG 2.0). Here, we describe MIBiG
3.0, a database update comprising large-scale vali-
dation and re-annotation of existing entries and 661
new entries. Particular attention was paid to the an-
notation of compound structures and biological ac-
tivities, as well as protein domain selectivities. To-
gether, these new features keep the database up-
to-date, and will provide new opportunities for the
scientific community to use its freely available data,
e.g. for the training of new machine learning models
to predict sequence-structure-function relationships
for diverse natural products. MIBiG 3.0 is accessible
online at https://mibig.secondarymetabolites.org/.

GRAPHICAL ABSTRACT

INTRODUCTION

Across all kingdoms of life, organisms produce specialised
metabolites: molecules that are produced by bacteria, fungi
and plants to gain an advantage over their competitors in
challenging environments. Specialised metabolites, also re-
ferred to as secondary metabolites or natural products, ex-
hibit a wide variety of biological activities, including many

that are useful for pharmaceutical and agricultural applica-
tions, e.g. antibiotics, anti-cancer drugs, pesticides and her-
bicides. The production of specialised metabolites is typi-
cally encoded by biosynthetic gene clusters (BGCs): groups
of co-localised and co-regulated genes that jointly encode
a biosynthetic pathway. Therefore, microbial and plant
genomes can be mined for novel specialised metabolite pro-
duction by detecting BGCs and predicting their encoded
products and functions. Similar to how the relationship be-
tween DNA, mRNA and protein describes the flow of in-
formation in cells, we can define a ‘central dogma’ of spe-
cialised metabolism: a BGC sequence encodes a set of en-
zymes, which together assemble a compound structure (or
a cocktail of structural analogues), which in turn dictates
specialised metabolite function. Understanding how infor-
mation is translated from sequence to structure to func-
tion is key to natural product discovery. To address the first
stage, sequence information, various tools have been devel-
oped that automatically detect BGCs from DNA sequence,
including antiSMASH and its siblings fungiSMASH and
plantiSMASH (1,2), GECCO (3), DeepBGC (4), RiPP-
Miner (5) and PRISM 4 (6).

To facilitate dereplication and comparative analysis of
predicted BGCs with known BGCs, and to characterise the
interplay between sequence, structure and function, stan-
dardised data annotation and storage are essential. To this
purpose, we developed the Minimum Information about
a Biosynthetic Gene cluster (MIBiG) standard and built
a database which contains standardised entries for exper-
imentally validated BGCs of known function (7,8). Each
entry minimally contains information about the nucleotide
entry and coordinates of the genomic locus involved, the
producing organism’s taxonomy, biosynthetic class, name
of the produced compound(s), and literature reference(s).
There are also various optional fields for non-minimal en-
tries, including fields for gene function, product structure
and bioactivity, crosslinks to chemical structure databases
such as NP Atlas (9) and PubChem (10), and monomer
identity. With MIBiG 2.0 containing over 2000 entries, the
database has become an important reference for many re-
searchers that mine genomes for natural products. For ex-
ample, it has been used to estimate the potential for biosyn-
thetic novelty in large-scale microbiome studies (11,12), to
identify conserved amino acids playing key roles in catalytic
activities across enzyme families (13), to help guide natural
product discovery efforts towards high-potential taxa (14),
and to train machine-learning algorithms for natural prod-
uct activity prediction (15).

Here, we present MIBiG 3.0: an update designed to in-
crease the number of non-minimal entries in our database
and adding new data entries through a large-scale commu-
nity annotation effort. We focused on three features: the
characterisation and cross-linking of 1188 chemical struc-
tures, the annotation of 1002 bioactivities of BGC products,
and the validation and annotation of 2020 protein domain
substrates of nonribosomal peptide synthetases (NRPSs).
In addition, we added 661 novel BGCs to the MIBiG
database which were published since the last database up-
date and removed 69 duplicate and low-quality entries (Fig-
ure 1). Together, these additions keep the database current,
and provide unique opportunities for exploring complex

https://mibig.secondarymetabolites.org/
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Figure 1. Overview of MIBiG 3.0. (A) Added, removed and updated entries since MIBiG 2.0. (B) Improvements in the annotation of compounds, bioac-
tivities, molecular targets and NRPS domain substrates.

sequence-structure-function relationships in diverse natural
product domains.

METHODS AND IMPLEMENTATION

Manual curation through crowdsourcing and mass online ‘an-
notathons’

As authors themselves typically have the best understand-
ing of the BGC they have studied, we greatly encour-
age natural product researchers to submit their BGCs to
MIBiG during the process of publishing their work. To this
purpose, MIBiG supplies an online form through which
researchers can request a unique MIBiG identifier and
submit their experimentally verified BGCs, pre- or post-
publication. Since MIBiG version 2.0, this has yielded 97
manually submitted, high-quality entries which have now
been incorporated into MIBiG 3.0. Still, there are far
more published BGCs that are not manually submitted to
MIBiG.

With an increasing number of papers describing novel
BGCs being published every year, manually annotating, val-
idating and adding BGCs to MIBiG has become a mam-

moth task. Therefore, we took to social media to gauge the
community’s interest in participating in an online annota-
tion event. We received many positive responses, with 86
people from four different continents volunteering to par-
ticipate in our MIBiG ‘annotathons’. We organised eight
three-hour online sessions, accommodating different time-
zones, with various breakout rooms dedicated to specific
annotation tasks: annotating new clusters, annotating and
cross-linking compound structures, annotating compound
bioactivities, and assigning substrate selectivities to NRPS
protein domains. We prepared multiple instruction videos
and assigned an expert to each of the breakout rooms who
could be directly approached with questions from annota-
tors to ensure that annotation quality was consistent. In
addition, one of our annotators at the CINVESTAV re-
search institute mobilised fourteen MSc Integrative Biology
students of their 2021 Bacterial Genomics class to anno-
tate compound bioactivities under supervision. Finally, we
resolved 125 database issues that were raised by users on
our GitHub page, redefining BGC boundaries, correcting
biosynthetic classes, adding and removing literature refer-
ences, fixing compound structures, and removing duplicate
entries.
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Annotating and cross-linking compound structures

Since version 2.0, compound structures in MIBiG have
been cross-linked to the NP Atlas database: a database con-
taining structures of natural products isolated from bacte-
ria and fungi. During the preparations for version 3.0, we
collaborated with the NP Atlas team to (i) add structures
for compounds in SMILES format (16), including stere-
ochemical information where possible and (ii) cross-link
them to five databases of chemical structures: NP Atlas (9),
PubChem, ChemSpider (17), LOTUS (18), and ChEMBL
(19). If compound entries were found in multiple databases,
SMILES strings from NP Atlas were prioritised. SMILES
strings were also collected for existing entries that were
already cross-linked to a database but did not report a
SMILES string. Correctness of SMILES syntax was vali-
dated with PIKAChU (20).

Annotating compound bioactivities

To improve MIBiG as a resource for machine learning mod-
els predicting sequence-structure-function relationships, we
added bioactivity data for 1002 compounds and chemical
target data for 95 compounds. 708 of these annotations
were transferred from the dataset assembled by Walker and
Clardy, who designed a machine learning model to pre-
dict BGC function from sequence (15). To accommodate
consistent annotations, we assigned all existing and novel
bioactivities to 68 standardised functional categories (Sup-
plementary Table S1).

Annotating NRPS protein domains

To concretise the relationship between NRPS sequence and
the structure of its produced nonribosomal peptide (NRP),
we annotated and validated the substrate selectivities of
2775 NRPS adenylation (A) domains. A-domains dictate
which monomers (predominantly amino acids) are incor-
porated into (hybrid) NRP scaffolds. Substrate annota-
tion can be performed at different levels: we can define
the pre-tailored substrate precursor (e.g. L-aspartic acid);
the substrate as recognised by the A-domain (e.g. (3R)-
3-hydroxy-L-aspartic acid); or the post-tailored integrated
monomer that ends up in the final NRP scaffold (e.g. (3R)-
3-hydroxy-D-aspartic acid). We chose to annotate the sub-
strates as recognised by the A-domain, as this best reflects
the biological relationship between A-domain and incorpo-
rated monomer. In addition to substrate identity, we also
recorded evidence for substrate selectivity in the form of an
evidence code and literature references. To this purpose, we
added 13 evidence codes to the JSON schema which is used
to standardise MIBiG entries (Table 1).

After community annotation, substrate naming was ho-
mogenised and each stereochemically ambiguous substrate
was manually curated by an expert. Where stereochem-
istry could be inferred from structure, this is reflected in
the substrate name for each stereocenter. Exceptions are
amino acid names, which are assumed to be in their L-
configuration. To avoid any ambiguity in substrate naming,
we also linked each of our 274 unique substrate names to an

Table 1. Evidence codes for adenylation domain substrate annotations

Evidence code
Accepted as

standalone evidence
New in

MIBiG 3.0

Activity assay X
ACVS assay X X
ATP-PPi exchange assay X X
Enzyme-coupled assay X X
Feeding study X
Heterologous expression X X
Homology X
HPLC X X
In-vitro experiments X X
Knock-out studies X X
Mass spectrometry X X
NMR X X
Radio labelling X X
Sequence-based prediction
Steady-state kinetics X X
Structure-based inference X
X-ray crystallography X X

As indicated, some evidence codes are only accepted as evidence for sub-
strate specificity when combined with a second evidence code that pro-
vides further support for a data entry. Thirteen evidence codes were newly
introduced in MIBiG 3.0. ACVS assay: �-(L-R-aminoadipyl)-L-cysteinyl-
D-valine synthetase assay, specific for measuring penicillin production.
HPLC: high-performance liquid chromatography. NMR: nuclear mag-
netic resonance.

isomeric SMILES string representing the substrate struc-
ture (Figure 2; Supplementary Table S2). SMILES valida-
tion and deduplication were handled using PIKAChU (20).

RESULTS AND DISCUSSION

Taking the ‘minimal’ out of MIBiG

While MIBiG 2.0 serves an important role in the commu-
nity as a reference database to quickly identify whether a
BGC is similar to any known BGCs, its utility as a re-
source for exploring sequence-structure-function relation-
ships could be improved. This can mainly be explained by
the high number of minimal entries in the database: en-
tries that only contain sequence and compound informa-
tion that could be augmented by adding further standard-
ised annotations. For MIBiG 3.0, we aimed to promote as
many existing and novel entries as possible to non-minimal
entries by annotating compound structures (1188), bioac-
tivities (1002) and NRPS substrates (2020). In total, we
added 661 novel BGCs and 4871 separate data entries to
our database, increasing our number of non-minimal en-
tries from 486 to 928 (Figure 1, Supplementary Figure S1).
MIBiG 3.0 now contains 2502 entries, spanning 16 phyla
across 5 kingdoms of life (Table 2).

Streamlining research into the central dogma of specialised
metabolism

With 905 NRPS and modular Type I PKS BGCs in
MIBiG 3.0, modular BGCs constitute a substantial part
of our database. Modular systems are characterised by
enzyme complexes comprising repeating domain architec-
tures, which collectively assemble a natural product scaf-
fold. When the substrate selectivities of the recognition do-
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Figure 2. Similarity network of annotated NRPS substrates. Each node represents one of 274 unique NRPS substrate structures in MIBiG 3.0. Colours
indicate substrate categories, and node size correlates with the number of annotations for that substrate in the MIBiG database. Substrates were clustered
based on Tanimoto similarity of ECFP-4 molecular fingerprints (25) (edge cut-off = 0.46).

Table 2. Entries in MIBiG 3.0 by phylum

Kingdom Phylum
Number of BGCs in

MIBiG 3.0

Bacteria Actinobacteria 1042
Proteobacteria 527
Firmicutes 229
Cyanobacteria 139
Bacteroidetes 17
Candidatus tectomicrobia 6
Chloroflexi 4
Verrucomicrobia 3
Planctomycetes 2
Kiritimatiellaeota 1
Unknown 41

Fungi Ascomycota 415
Basidiomycota 23
Unknown 3

Plantae Streptophyta 43
Rhodophyta 2

Archaea Euryarchaeota 3
Chromista Bacillariophyta 1

Dinophyceae 1

mains are known (acyltransferase (AT) domains for PKS
and A-domains for NRPS), these consistent architectures
make it possible to predict the structure of chemical scaf-
folds with reasonable accuracy. Most AT domains in PKS
systems recognise one of two substrates, malonyl-CoA or
methylmalonyl-CoA, and excellent bioinformatics tools ex-
ist to distinguish between the two (21). However, for A-
domains in NRPS systems, which recognise over 500 known
substrates (22), substrate prediction is a greater challenge,
which will require substantially more data to obtain models
of comparably predictive power. Therefore, we decided to
make the annotation of the substrate selectivity of NRPS
A-domains a major focus of MIBiG 3.0. MIBiG 3.0 now
contains annotations for 2775 A-domains (compared to 755
annotations in MIBiG 2.0; Figure 1B), covering 274 unique
substrates which are identified by stereochemically curated
isomeric SMILES strings (Figure 2; Supplementary Table
S2). This makes MIBiG the largest resource for A-domain
substrate data, containing 3–4 times as many labelled data
points as the training sets used for the A-domain selectivity
predictors SANDPUMA (23) and NRPSPredictor2 (24).
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We hope that eventually this dataset will be leveraged to
train an improved A-domain substrate predictor, which can
in turn be integrated into tools like antiSMASH to improve
NRP scaffold structure prediction.

Since version 2.0, we have added structural identifiers of
1188 compounds to our database in SMILES format (16),
increasing the number of BGCs with structural data from
1347 to 1860 (Figure 1). By pulling SMILES strings di-
rectly from cross-linked databases where possible, we avoid
conflicts caused by versioning and SMILES formatting.
Additionally, we linked 1002 additional compounds to 51
unique bioactivities, creating opportunities for computa-
tionally predicting compound bioactivity from structure.
For a further 95 compounds, we were also able to annotate
their molecular targets (Figure 1B).

By centering MIBiG 3.0 around the annotation of sub-
strate building blocks, compound structures, and bioactiv-
ities, we aspired to streamline future research into all as-
pects of sequence-structure-function relationships that lie at
the heart of natural product research. All data can be easily
downloaded and parsed in bulk from our database in JSON
and GenBank format or accessed on an entry-by-entry ba-
sis through our searchable online repository. As such, we
hope that MIBiG 3.0 will prove an important resource for
future machine learning endeavours that aim to decode the
central dogma of specialised metabolism.

DATA AVAILABILITY

The MIBiG Repository is available at https://mibig.
secondarymetabolites.org/. There is no access restriction for
academic or commercial use of the repository and its data.
The source code components, JSON-formatted data stan-
dard, and SQL schema for the MIBiG Repository are avail-
able on GitHub (https://github.com/mibig-secmet) under
an OSI-approved Open Source licence.
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Supplementary Data are available at NAR Online.
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