6 research outputs found

    Captive pandas are at risk from environmental toxins

    Get PDF
    Ex situ conservation efforts are the last resort for many critically endangered species, and captive breeding centers are thought to provide a safe environment for producing individuals for eventual re-introduction to the wild. The giant panda (Ailuropoda melanoleuca) is one of the world's most endangered animals and is a widely recognized symbol for conservation. Here, we report that captive pandas in China experience environmental and dietary exposures to high concentrations of persistent organic pollutants (polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls) and heavy metals (arsenic, cadmium, chromium, and lead). In the short term, those animals exhibiting elevated levels of such toxins should be relocated to breeding centers in less contaminated areas. Ensuring the long-term survival of both captive and wild pandas depends in part on reducing atmospheric emissions of toxic pollutants throughout China

    High metal reactivity and environmental risks at a site contaminated by glass waste

    No full text
    This study addresses the reactivity and risks of metals (Ba, Cd, Co, Cr, Cu, Ni, Pb, Zn, As and Sb) at a Swedish site with large glass waste deposits. Old glassworks sites typically have high total metal concentrations, but as the metals are mainly bound within the glass waste and considered relatively inert, environmental investigations at these kinds of sites are limited. In this study, soil and landfill samples were subjected to a sequential chemical extraction procedure. Data from batch leaching tests and groundwater upstream and downstream of the waste deposits were also interpreted. The sequential extraction revealed that metals in &lt;2 mm soil/waste samples were largely associated with geochemically active fractions, indicating that metals are released from pristine glass and subsequently largely retained in the surrounding soil and/or on secondary mineral coatings on fine glass particles. From the approximately 12,000 m(3) of coarse glass waste at the site, almost 4000 kg of Pb is estimated to have been lost through corrosion, which, however, corresponds to only a small portion of the total amount of Pb in the waste. Metal sorption within the waste deposits or in underlying soil layers is supported by fairly low metal concentrations in groundwater. However, elevated concentrations in downstream groundwater and in leachates of batch leaching tests were observed for several metals, indicating on-going leaching. Taken together, the high metal concentrations in geochemically active forms and the high amounts of as yet uncorroded metal-rich glass, indicate considerable risks to human health and the environment.</p

    Challenges in assessing the health risks of consuming vegetables in metal-contaminated environments

    No full text
    A great deal of research has been devoted to the characterization of metal exposure due to the consumption of vegetables from urban or industrialized areas. It may seem comforting that concentrations in crops, as well as estimated exposure levels, are often found to be below permissible limits. However, we show that even a moderate increase in metal accumulation in crops may result in a significant increase in exposure. We also highlight the importance of assessing exposure levels in relation to a regional baseline. We have analyzed metal (Pb, Cd, As) concentrations in nearly 700 samples from 23 different vegetables, fruits, berries and mushrooms, collected near 21 highly contaminated industrial sites and from reference sites. Metal concentrations generally complied with permissible levels in commercial food and only Pb showed overall higher concentrations around the contaminated sites. Nevertheless, probabilistic exposure assessments revealed that the exposure to all three metals was significantly higher in the population residing around the contaminated sites, for both low-, medianand high consumers. The exposure was about twice as high for Pb and Cd, and four to six times as high for As. Since vegetable consumption alone did not result in exposure above tolerable intakes, it would have been easy to conclude that there is no risk associated with consuming vegetables grown near the contaminated sites. However, when the increase in exposure is quantified, its potential significance is harder to dismiss - especially when considering that exposure via other routes may be elevated in a similar way.</p
    corecore