299 research outputs found

    Tribological interaction between polytetrafluoroethylene and silicon oxide surfaces

    Get PDF
    Cataloged from PDF version of article.We investigated the tribological interaction between polytetrafluoroethylene (PTFE) and silicon oxide surfaces. A simple rig was designed to bring about a friction between the surfaces via sliding a piece of PTFE on a thermally oxidized silicon wafer specimen. A very mild inclination (similar to 0.5 degrees) along the sliding motion was also employed in order to monitor the tribological interaction in a gradual manner as a function of increasing contact force. Additionally, some patterns were sketched on the silicon oxide surface using the PTFE tip to investigate changes produced in the hydrophobicity of the surface, where the approximate water contact angle was 45 degrees before the transfer. The nature of the transferred materials was characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). XPS results revealed that PTFE was faithfully transferred onto the silicon oxide surface upon even at the slightest contact and SEM images demonstrated that stable morphological changes could be imparted onto the surface. The minimum apparent contact pressure to realize the PTFE transfer is estimated as 5 kPa, much lower than reported previously. Stability of the patterns imparted towards many chemical washing processes lead us to postulate that the interaction is most likely to be chemical. Contact angle measurements, which were carried out to characterize and monitor the hydrophobicity of the silicon oxide surface, showed that upon PTFE transfer the hydrophobicity of the SiO2 surface could be significantly enhanced, which might also depend upon the pattern sketched onto the surface. Contact angle values above 100 degrees were obtained. (C) 2014 AIP Publishing LLC

    Antiproliferative Activity of Some Medicinal Plants on Human Breast and Hepatocellular Carcinoma Cell Lines and their Phenolic Contents

    Get PDF
    Purpose: To determine the phenolic composition and antiproliferative activity of 16 different extracts (hexane, dichloromethane, methanol and water) obtained from Bellis perennis, Convolvulus galaticus, Trifolium pannonicum and Lysimachia vulgaris on human breast cancer (MCF-7) and human hepatocellular carcinoma (HepG2/C3A) cell lines.Methods: The aerial parts of the plants were successively extracted with hexane, dichloromethane, methanol and water using a Soxhlet apparatus. The phenolic content of the plants were determined by plants by high performance liquid chromatography (HPLC) while their antiproliferative activity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide, a yellow tetrazole (MTT) assay.Results: Among the tested extracts, the methanol extract of B. perennis showed the best antiproliferative activity against MCF-7 cell line with IC50 (inhibiting 50 % of cell growth) value of 71.6 μg/mL. Furthermore, the dichloromethane extract of C. galaticus showed the best anti-proliferative activity against HepG2/C3A cell line with IC50 of 57.3 μg/mL. The HPLC data for the plant extracts showed the presence of the following phenolic compounds: gallic acid monohydrate, caffeic acid, rutin hydrate, luteolin-7-O-β-D glucoside, kaempferol, myricetin, quercetin, coumarin and apigenin.Conclusion: The findings of this study indicate that there is some justification for the use of B. perennis and C. galaticus as traditional anticancer medicinal herbs.Keywords: Bellis perennis, Convolvulus galaticus, Trifolium pannonicum subsp. elongatum, Lysimachia vulgaris, MCF-7, HepG2/C3A, Phenolics, Breast cancer, Antiproliferativ

    Identification of differentially expressed subnetworks based on multivariate ANOVA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since high-throughput protein-protein interaction (PPI) data has recently become available for humans, there has been a growing interest in combining PPI data with other genome-wide data. In particular, the identification of phenotype-related PPI subnetworks using gene expression data has been of great concern. Successful integration for the identification of significant subnetworks requires the use of a search algorithm with a proper scoring method. Here we propose a multivariate analysis of variance (MANOVA)-based scoring method with a greedy search for identifying differentially expressed PPI subnetworks.</p> <p>Results</p> <p>Given the MANOVA-based scoring method, we performed a greedy search to identify the subnetworks with the maximum scores in the PPI network. Our approach was successfully applied to human microarray datasets. Each identified subnetwork was annotated with the Gene Ontology (GO) term, resulting in the phenotype-related functional pathway or complex. We also compared these results with those of other scoring methods such as <it>t </it>statistic- and mutual information-based scoring methods. The MANOVA-based method produced subnetworks with a larger number of proteins than the other methods. Furthermore, the subnetworks identified by the MANOVA-based method tended to consist of highly correlated proteins.</p> <p>Conclusion</p> <p>This article proposes a MANOVA-based scoring method to combine PPI data with expression data using a greedy search. This method is recommended for the highly sensitive detection of large subnetworks.</p

    Ceramic Microbial Fuel Cells Stack: Power generation in standard and supercapacitive mode

    Get PDF
    © 2018 The Author(s). In this work, a microbial fuel cell (MFC) stack containing 28 ceramic MFCs was tested in both standard and supercapacitive modes. The MFCs consisted of carbon veil anodes wrapped around the ceramic separator and air-breathing cathodes based on activated carbon catalyst pressed on a stainless steel mesh. The anodes and cathodes were connected in parallel. The electrolytes utilized had different solution conductivities ranging from 2.0 mScm-1 to 40.1 mScm-1, simulating diverse wastewaters. Polarization curves of MFCs showed a general enhancement in performance with the increase of the electrolyte solution conductivity. The maximum stationary power density was 3.2 mW (3.2 Wm-3) at 2.0 mScm-1 that increased to 10.6 mW (10.6 Wm-3) at the highest solution conductivity (40.1 mScm-1). For the first time, MFCs stack with 1 L operating volume was also tested in supercapacitive mode, where full galvanostatic discharges are presented. Also in the latter case, performance once again improved with the increase in solution conductivity. Particularly, the increase in solution conductivity decreased dramatically the ohmic resistance and therefore the time for complete discharge was elongated, with a resultant increase in power. Maximum power achieved varied between 7.6 mW (7.6 Wm-3) at 2.0 mScm-1 and 27.4 mW (27.4 Wm-3) at 40.1 mScm-1

    Epigenetic perturbations in the pathogenesis of mustard toxicity; hypothesis and preliminary results

    Get PDF
    Among the most readily available chemical warfare agents, sulfur mustard (SM), also known as mustard gas, has been the most widely used chemical weapon. SM causes debilitating effects that can leave an exposed individual incapacitated for days to months; therefore delayed SM toxicity is of much greater importance than its ability to cause lethality. Although not fully understood, acute toxicity of SM is related to reactive oxygen and nitrogen species, oxidative stress, DNA damage, poly(ADP-ribose) polymerase (PARP) activation and energy depletion within the affected cell. Therefore several antioxidants and PARP inhibitors show beneficial effects against acute SM toxicity. The delayed toxicity of SM however, currently has no clear mechanistic explanation. One third of the 100,000 Iranian casualties are still suffering from the detrimental effects of SM in spite of the extensive treatment. We, therefore, made an attempt whether epigenetic aberrations may contribute to pathogenesis of mustard poisoning. Preliminary evidence reveals that mechlorethamine (a nitrogen mustard derivative) exposure may not only cause oxidative stress, DNA damage, but epigenetic perturbations as well. Epigenetic refers to the study of changes that influence the phenotype without causing alteration of the genotype. It involves changes in the properties of a cell that are inherited but do not involve a change in DNA sequence. It is now known that in addition to mutations, epimutations contribute to a variety of human diseases. Under light of preliminary results, the current hypothesis will focus on epigenetic regulations to clarify mustard toxicity and the use of drugs to correct possible epigenetic defects

    Matrix metalloproteinases 2 and 9 (gelatinases A and B) expression in malignant mesothelioma and benign pleura

    Get PDF
    Matrix metalloproteinases (MMPs), in particular the gelatinases (MMP-2 and -9), play a significant role in tumour invasion and angiogenesis. The expression and activities of MMPs have not been characterised in malignant mesothelioma (MM) tumour samples. In a prospective study, gelatinase activity was evaluated in homogenised supernatants of snap frozen MM (n = 35), inflamed pleura (IP, n = 12) and uninflammed pleura (UP, n = 14) tissue specimens by semiquantitative gelatin zymography. Matrix metalloproteinases were correlated with clinicopathological factors and with survival using Kaplan-Meier and Cox proportional hazard models. In MM, pro- and active MMP-2 levels were significantly greater than for MMP-9 (P = 0.006, P<0.001). Active MMP-2 was significantly greater in MM than in UP (P=0.04). MMP-2 activity was equivalent between IP and MM, but both pro- and active MMP-9 activities were greater in IP (P=0.02, P=0.009). While there were trends towards poor survival with increasing total and pro-MMP-2 activity (P=0.08) in univariate analysis, they were both independent poor prognostic factors in multivariate analysis in conjunction with weight loss (pro-MMP-2 P = 0.03, total MMP-2 P = 0.04). Total and pro-MMP-2 also contributed to the Cancer and Leukemia Group B prognostic groups. MMP-9 activities were not prognostic. Matrix metalloproteinases, and in particular MMP-2, the most abundant gelatinase, may play an important role in MM tumour growth and metastasis. Agents that reduce MMP synthesis and/or activity may have a role to play in the management of MM. © 2003 Cancer Research UK

    Implication for Functions of the Ectopic Adipocyte Copper Amine Oxidase (AOC3) from Purified Enzyme and Cell-Based Kinetic Studies

    Get PDF
    AOC3 is highly expressed in adipocytes and smooth muscle cells, but its function in these cells is currently unknown. The in vivo substrate(s) of AOC3 is/are also unknown, but could provide an invaluable clue to the enzyme's function. Expression of untagged, soluble human AOC3 in insect cells provides a relatively simple means of obtaining pure enzyme. Characterization of enzyme indicates a 6% titer for the active site 2,4,5-trihydroxyphenylalanine quinone (TPQ) cofactor and corrected kcat values as high as 7 s−1. Substrate kinetic profiling shows that the enzyme accepts a variety of primary amines with different chemical features, including nonphysiological branched-chain and aliphatic amines, with measured kcat/Km values between 102 and 104 M−1 s−1. Km(O2) approximates the partial pressure of oxygen found in the interstitial space. Comparison of the properties of purified murine to human enzyme indicates kcat/Km values that are within 3 to 4-fold, with the exception of methylamine and aminoacetone that are ca. 10-fold more active with human AOC3. With drug development efforts investigating AOC3 as an anti-inflammatory target, these studies suggest that caution is called for when screening the efficacy of inhibitors designed against human enzymes in non-transgenic mouse models. Differentiated murine 3T3-L1 adipocytes show a uniform distribution of AOC3 on the cell surface and whole cell Km values that are reasonably close to values measured using purified enzymes. The latter studies support a relevance of the kinetic parameters measured with isolated AOC3 variants to adipocyte function. From our studies, a number of possible substrates with relatively high kcat/Km have been discovered, including dopamine and cysteamine, which may implicate a role for adipocyte AOC3 in insulin-signaling and fatty acid metabolism, respectively. Finally, the demonstrated AOC3 turnover of primary amines that are non-native to human tissue suggests possible roles for the adipocyte enzyme in subcutaneous bacterial infiltration and obesity

    Polycomb-Like 3 Promotes Polycomb Repressive Complex 2 Binding to CpG Islands and Embryonic Stem Cell Self-Renewal

    Get PDF
    Polycomb repressive complex 2 (PRC2) trimethylates lysine 27 of histone H3 (H3K27me3) to regulate gene expression during diverse biological transitions in development, embryonic stem cell (ESC) differentiation, and cancer. Here, we show that Polycomb-like 3 (Pcl3) is a component of PRC2 that promotes ESC self-renewal. Using mass spectrometry, we identified Pcl3 as a Suz12 binding partner and confirmed Pcl3 interactions with core PRC2 components by co-immunoprecipitation. Knockdown of Pcl3 in ESCs increases spontaneous differentiation, yet does not affect early differentiation decisions as assessed in teratomas and embryoid bodies, indicating that Pcl3 has a specific role in regulating ESC self-renewal. Consistent with Pcl3 promoting PRC2 function, decreasing Pcl3 levels reduces H3K27me3 levels while overexpressing Pcl3 increases H3K27me3 levels. Furthermore, chromatin immunoprecipitation and sequencing (ChIP-seq) reveal that Pcl3 co-localizes with PRC2 core component, Suz12, and depletion of Pcl3 decreases Suz12 binding at over 60% of PRC2 targets. Mutation of conserved residues within the Pcl3 Tudor domain, a domain implicated in recognizing methylated histones, compromises H3K27me3 formation, suggesting that the Tudor domain of Pcl3 is essential for function. We also show that Pcl3 and its paralog, Pcl2, exist in different PRC2 complexes but bind many of the same PRC2 targets, particularly CpG islands regulated by Pcl3. Thus, Pcl3 is a component of PRC2 critical for ESC self-renewal, histone methylation, and recruitment of PRC2 to a subset of its genomic sites
    • …
    corecore