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Abstract An accurate probability distribution model of

wind speed is critical to the assessment of reliability con-

tribution of wind energy to power systems. Most of current

models are built using the parametric density estimation

(PDE) methods, which usually assume that the wind speed

are subordinate to a certain known distribution (e.g. Wei-

bull distribution and Normal distribution) and estimate the

parameters of models with the historical data. This paper

presents a kernel density estimation (KDE) method which

is a nonparametric way to estimate the probability density

function (PDF) of wind speed. The method is a kind of

data-driven approach without making any assumption on

the form of the underlying wind speed distribution, and

capable of uncovering the statistical information hidden in

the historical data. The proposed method is compared with

three parametric models using wind data from six sites.

The results indicate that the KDE outperforms the PDE in

terms of accuracy and flexibility in describing the long-

term wind speed distributions for all sites. A sensitivity

analysis with respect to kernel functions is presented and

Gauss kernel function is proved to be the best one. Case

studies on a standard IEEE reliability test system (IEEE-

RTS) have verified the applicability and effectiveness of

the proposed model in evaluating the reliability perfor-

mance of wind farms.

Keywords Wind speed model, Kernel density estimation,

Reliability evaluation, Wind power

1 Introduction

The utilization of wind energy has been increasing around

the world at an accelerating pace due to its non-exhausted

property, environmental and social benefits, together with

public support and government incentives. However, gen-

erating capacity from wind farms behaves quite differently

than that from conventional generating sources because of

the fluctuating and intermittent nature of wind. To handle

with these features, wind speed is assumed to be a random

variablewhich follows various types of distributions, such as

Weibull, Rayleigh, Gauss and etc. [1–8]. Therefore, wind

farms and generating capacity assessment of power system

incorporating wind energy [9–16] should be conducted with

previously published wind speed distribution analysis.

The estimation of wind speed distribution is an essential

requirement in the reliability analysis of power system with

wind power integrated since the wind energy available for

a particular location is mainly determined by the proba-

bility distribution of wind speed. Therefore, a variety of

PDFs have been proposed in literature to describe wind
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speed distributions. Currently, the widely adopted PDFs are

unimodal types [1–8] including Weibull function, Rayleigh

function, Gauss function, Gamma function, lognormal

function, etc. Besides, some mixture functions of simple

unimodal distributions [17–19], such as the two-component

mixture Weibull function (Weibull–Weibull) and singly

truncated normal Weibull mixture function (Normal–

Weibull), are also applied to wind energy analysis recently,

and they have been proved to be more effective than uni-

modal types for wind regimes with bimodal distribution. A

number of detailed reviews on modeling the probability

distributions of wind speed in wind energy analysis can be

found in references [20–28].

The wind speed models above have a characteristic in

common, that is to assume wind speed can be described by

a known probability density function (PDF), and then

estimate the function parameters using the historical wind

speed data. These assumptions aim to simplify wind speed

model, and make analysis and calculation easy. However,

the errors in the results could be significant and lead to

wrong conclusions when the supposed wind distributions

do not match the real ones.

Nonparametric density estimation (NPDE) methods

provide a new idea and solution to these problems. The

methods have on need of prior knowledge about wind

speed distribution or any assumption on probability dis-

tribution thus is suitable to analyze feature space of any

structure. KDE is the most widely used NPDE techniques

in data analysis and has applications in geography [29],

ecology [30] and other fields.

This paper presents a technique for modeling long-term

wind speed distribution using the KDE and applies this

method to reliability assessment of power systems con-

taining wind energy. The effects of adding wind capacity to

a conventional generating system are illustrated using

IEEE-RTS which consists of 32 traditional generating units

with a total capacity of 3405 MW and a peak load of

2850 MW. The generating unit ratings and reliability

parameters are shown in Ref. [31]. The loss of load

expectation (LOLE) and loss of energy expectation

(LOEE) indices are used to assess the risk in this study.

2 Histogram estimation on wind speed probability
density

Histogram is a kind of simple and initial NPDE method.

Its basic principle is to divide sample spaces into several

subspaces, and estimate density based on the sampling

amount in every subspace. Let V = (v1,…,vi,…,vn) repre-

sent wind speed sample. Divide the sample space into m

subspaces and the jth subspace, such that Bj ¼ ½x0
þðj� 1Þh; x0 þ jh� j ¼ 1; 2; . . .;mð Þ, where x0 is the

starting point and h is the subspace width. The PDF using

the histogram estimation at point v can be expressed as.

f̂ ðvÞ ¼ 1

nh

Xn

i¼1

IðviÞIðVÞ ð1Þ

where I(V) is the indicator function, which is 1 provided

that v [ Bj and is 0 otherwise.

The calculation of histogram estimation process is simple,

but it has several demerits: 1) Accurate estimation on center

point for subspaceBj, but weak on edge estimation; 2) Strong

dependence on the starting point x0 and smooth parameter h;

3) High requirement of data for high dimensional feature

space. These disadvantages make histogram estimation only

suitable to PDE with low dimensions.

To overcome above problems, Rosenblatt [32] and

Parzen [33] make improvements on histogram estimation

methods. Firstly, replace indicator function in histogram by

smooth kernel function, and then set estimation interval

center as sample observation value. These improvements

lead to method commonly referred to as KDE.

3 KDE on wind speed probability density

3.1 Basic principle of KDE

Let (v1, v2,…, vn) represents a sample of the wind speed

series. Its underlying PDF can be estimated by the fol-

lowing kernel density function (KDF):

f̂ ðvÞ ¼ 1

nh

Xn

i¼1

K
v� vi

h

� �
ð2Þ

where n is the sample size, h is the bandwidth and K(�) is a
kernel function, which satisfies the constraints:

KðuÞdu ¼ 1

uKðuÞdu ¼ 0

u2KðuÞdu\1

8
<

: ð3Þ

When sample size is sufficiently large, f̂ vð Þ is converged to

f(v) with probability one.

It can be observed from Eq. (2) that the performance of

KDE depends on the kernel function and bandwidth. There

are many different kinds of kernel functions. Prakasa Rao

[34] indicates that KDE is insensitive to the selection of

kernel function when n is sufficiently large. Therefore, a

kernel function is generally chosen for a certain type.

Table 1 shows the commonly used kernel functions.

3.2 Selection of bandwidth

Bandwidth has relatively great impacts on the accuracy

of KDE. The selection of bandwidth is, therefore, key to
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accurate estimation of wind speed distribution. The band-

width can be chosen from measuring the estimation error

between the underlying function f(v) and its estimate f̂ ðvÞ.
One commonly used error measure is the mean integrated

squared error (MISE), which is expressed as

eMISEðf̂ ðvÞÞ ¼
R
Eðf̂ ðvÞ � f ðvÞÞ2dv

¼ l2ðKÞ2

4
Rðf 00ðvÞÞh4 þ ðnhÞ�1

RðKÞ þ oððnhÞ�1 þ h4Þ

ð4Þ

where

l2ðKÞ ¼
Z

u2KðuÞdu; RðKÞ ¼
Z

KðuÞ2du:

Omitting higher order infinitesimal in Eq. (4), an

asymptotic MISE (AMISE) can be obtained.

eAMISEðf̂ ðvÞÞ ¼
l2ðKÞ2

4
Rðf 00ðvÞÞh4 þ ðnhÞ�1

RðKÞ ð5Þ

The optimal bandwidth can be obtained by

differentiating AMISE with respect to the h.

hAMISE ¼ RðKÞ
l2ðKÞ2Rðf 00ðvÞÞn

" #1=5

ð6Þ

It can be seen from Eq. (6) that the expression involves

second derivative f00(v) of unknown function f(v), so the

estimation of f00(v) must be carried out before calculating of

smooth parameter. Silverman [35] proposes an empirical

method on selecting smooth parameter which takes normal

density function as the reference distribution of the

unknown PDF f(v). However, it can lead to over-

smoothing when the underlying distribution is

asymmetric or multimodal. In these cases, more

sophisticated selection methods such as direct-plug-in

(DPI) and cross-validation (CV) should be adopted. A

conceptually simple technique, with theoretical

justification and good empirical performance, is the DPI

technique. The key step of DPI method relies on finding an

estimate of the density functional R(f00(v)) in Eq. (6). The

detailed information of this method can refer to Ref. [36].

4 Wind speed sampling

An appropriate random simulation of wind speed is

required for the assessment the reliability of power system

containing wind energy. The KDF can be used to simulate

the wind speed. However, the KDF is extremely compli-

cated according to its expression, which means that there

will be significant difficulties in applying direct sampling.

This paper presents an acceptance-rejection sampling

technique to simulate wind speed [37]. The basic idea of

the proposed technique is to generate wind speed data from

a proposal PDF g(v;a) instead of sampling directly from the

target distribution f(v). To make sure that the technique can

be performed, f(v) should satisfy f ðvÞ 6 Cgðv; aÞ, where C

is a bias factor with C > 1.

The sampling process carries out as following steps:

Step 1 Simulate a random u from U(0,1) uniform

distribution;

Step 2 Simulate a random v from the proposal PDF

g(v;a);
Step 3 Check whether or not u\ f(v)/(C 9 g(v;a)).

If this holds, accept v as a sample for f(v);

If not, reject v, and repeat the sampling steps.

The sampling efficiency of the proposed technique is

inversely proportional to bias factor C, thus C should be as

Table 1 Commonly used kernel functions

Kernel K(u)

Uniform 1=2Ið u 6 1j jÞ
Gauss ð

ffiffiffiffiffiffi
2p

p
Þ�1

expð�u2=2Þ
Epanechnikov 0:75ð1� u2ÞIð u 6 1j jÞ
Triangle 1� uj jð ÞIð u 6 1j jÞ

Table 2 Geographical information of the six sites and their wind speeds

Site Latitude Longitude Elevation (m) Wind speed at 80 m above ground (m/s)

Mean Standard deviation Min Max

A 48.817 -102.239 668 8.16 4.35 0.35 29.89

B 48.167 -99.648 573 8.06 4.48 0.81 29.61

C 48.471 -99.166 506 7.31 4.18 0.16 28.15

D -41.647 174.073 78 8.60 5.22 0.20 38.80

E -41.730 174.276 3 7.68 4.14 0.50 28.80

F -41.378 174.894 22 9.86 5.07 0.80 30.90
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small as possible. An unconstrained nonlinear optimization

method is used to select C and a and the objective function

is modeled as:

minF ¼ max
f ðvÞ

gðv; aÞ

� �
ð7Þ

The simulated wind speed data generated through the

above procedures can meet the model (2).

5 Case studies for verification of KDE in modeling
wind speed distribution

5.1 Information of wind sites and wind data

The hourly wind speed data at six wind sites from the

United States (designated as A, B, C) and New Zealand

(designated as D, E, F) for five years (from Jan. 1, 2007 to

Fig. 1 PDF plots and histogram of wind speed for six sites
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Dec. 31, 2011) were used to illustrate the accuracy and

flexibility of the proposed model. The wind speeds at six

sites were upscale to a hub height of 80 m. The geo-

graphical information and basic statistics of the six sites are

shown in the Table 2.

5.2 Accuracy judgment criteria

To show how a theoretical probability function matches

with the observation data, a statistic R2
a [17] is used as the

judgment criteria. The higher R2
a is, the greater the fit is.

The statistic R2
a is given by

R2
a ¼ 1� ð1� R2Þ N � 1

N � s

� �
ð8Þ

where

R2 ¼ 1�

PN

i¼1

ðpi � p̂iÞ2

PN

i¼1

ðpi � �pÞ2
ð9Þ

N is the total number of intervals; s is the number of

parameters in the model; pi and p̂i are the probability

obtained with the sample data and probability model at the

ith interval; �p is the mean of pi.

5.3 Wind speed modeling

Gauss kernel is applied as the weighting function in the

study and the bandwidths are calculated using DPI tech-

nique. Figure 1 illustrates the PDF plot of wind speed for

the six sites using the histogram estimation, KDE, Weibull

model, Normal model and Rayleigh model.

These figures demonstrate that the wind speed at dif-

ferent sites can have widely varying distribution modes,

and the KDE method can always agrees well with the

probability distribution characteristic for each site, whereas

the Weibull model, Normal model and Rayleigh model

show a high goodness of fit only at certain sites, which

indicates the flexibility of KDE method in modeling the

wind speed distributions.

The results of statistic R2
a obtained by KDE, Weibull

model, Normal model and Rayleigh model are shown in

Table 3. It is observed that the KDE presents the best fit to

the sample data at the six sites, which verifies its flexibility

and accuracy again. Among the three parametric estimation

models, Weibull model provide a higher fit degree for sites

A, B, C, D and E while Normal model for sites F. This

indicates that it is unreasonable to use a fixed parametric

function to model the wind speed distribution.

5.4 KDF investigation

The influence of kernel function on KDE is examined in

this part. Four different kernel functions introduced above

are chosen as the weight function in KDE for each site,

respectively. The results of statistic R2
a obtained by KDE

with different kernel functions at the six sites are shown in

Table 4.

It can be seen from Table 4 that the statistic R2
a obtained

by KDE with different kernel functions are similar. It

indicates that the KDF has minor impact on KDE. Among

the four kernel functions, Gauss kernel always outperforms

the others. Thus, Gauss kernel can be used as the weight

function in KDE for wind speed.

6 Application of KDE in generating system
reliability evaluation

6.1 Wind energy conversion model

Wind energy is converted into power by WTGs (wind

turbine generator). The power output characteristics of a

WTG are quite different from those of conventional gen-

erating units. There is a nonlinear relationship between the

power output and the wind speed. The relation can be

described using the operational parameters of the WTG.

Table 3 Results of R2
a with different models for six sites

Sites Wind speed model

KDE Weibull Normal Rayleigh

A 0.9989 0.9119 0.7038 0.9106

B 0.9990 0.9022 0.6686 0.8876

C 0.9994 0.9753 0.7639 0.9285

D 0.9971 0.8852 0.6387 0.7559

E 0.9929 0.8062 0.7346 0.7867

F 0.9963 0.8353 0.8889 0.8333

Table 4 Results of R2
a of KDE with different kernel functions for six

sites

Sites Uniform Gauss Epanechnikov Triangle

A 0.9915 0.9989 0.9934 0.9834

B 0.9921 0.9990 0.9927 0.9824

C 0.9916 0.9994 0.9957 0.9893

D 0.9903 0.9971 0.9904 0.9787

E 0.9909 0.9929 0.9874 0.9774

F 0.983 0.9963 0.9779 0.9680
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The commonly used parameters are the cut-in wind speed,

rated wind speed, and cut-out wind speed. The power

output [38] can be obtained from the simulated wind speed

v using Eq. (10)

Pr ¼
PrðAþ B� vþ C � v2Þ ðvci � v� vrÞ
Pr ðvr � vt � vcoÞ
0 ðv[ vcoÞ or ðv\vciÞ

8
<

:

ð10Þ

where Pr, vci, vr, and vco are the rated power output, the cut-

in wind speed, rated wind speed, and cut-out wind speed of

the WTG, respectively. The constants A, B, and C are

determined by vci, vr, and vco as expressed in Ref. [23].

6.2 Reliability assessment of power systems

incorporating wind power

A wind farm with a total capacity of 400 MW is

assumed to be located at the six sites and added to the

IEEE- RTS. The vci, vr, and vco of each WTG in the wind

farms are 3.0, 14.5 and 20.0 m/s, respectively. Studies in

Ref. [9] show that the changes in the FOR of the WTG do

not have a significant impact on the calculated system

reliability indices. It is, therefore, assumed in this paper

that the wind farm consists of identical WTG with zero

forced outage rates.

The reliability analysis on the system is conducted using

state-sampling simulation method combing with the mea-

sured wind data, KDE, Weibull model, Normal model and

Rayleigh model, respectively. Weibull PDF is selected as

the proposal distribution for KDF in the acceptance-rejec-

tion sampling technique. Tables 5 and 6 show the relia-

bility evaluation results of different models.

It can be seen from Tables 5 and 6 that the reliability

indices calculated by the proposed model are more close to

those calculated by the measured data. The average abso-

lute errors using the proposed model for the two indices are

0.22% and 0.39%, respectively, whereas those calculated

by the Weibull, Normal and Rayleigh are 3.24%, 6.25%

and 5.06% for LOLE, respectively, and 3.50%, 7.19% and

5.30% for LOEE, respectively. The investigation indicates

that the proposed model has higher accuracy compared

Table 5 LOLE of the IEEE-RTS using different wind speed models

Model Indices Wind sites

A B C D E F

Actual data LOLE (h/year) 5.7861 5.8704 6.2272 5.6230 5.5966 4.5434

KDE LOLE (h/year) 5.7914 5.8583 6.2064 5.6030 5.6109 4.5408

Error (%) 0.09 % -0.21 % -0.33 % -0.35 % 0.26 % -0.06 %

Weibull LOLE (h/year) 5.6049 5.6761 6.1699 5.5900 5.9266 4.7981

Error (%) -3.13 % -3.31 % -0.92 % -0.59 % 5.90 % 5.61 %

Normal LOLE (h/year) 5.2983 5.3675 5.8857 5.0386 5.6995 4.3429

Error (%) -8.43 % -8.57 % -5.48 % -10.39 % 1.84 % -4.41 %

Rayleigh LOLE (h/year) 5.5734 5.5922 6.0506 5.1777 5.8931 4.8117

Error (%) -3.68 % -4.74 % -2.84 % -7.92 % 5.30 % 5.91 %

Table 6 LOEE of the IEEE-RTS using different wind speed models

Model Indices Wind sites

A B C D E F

Actual data LOLE (h/year) 699.51 711.20 757.28 685.66 677.37 544.07

KDE LOLE (h/year) 701.25 709.88 755.63 682.82 681.82 547.29

Error (%) 0.25 -0.19 -0.22 -0.41 0.66 0.59

Weibull LOLE (h/year) 675.57 686.56 749.01 676.56 716.10 576.54

Error (%) -3.42 -3.47 -1.09 -1.33 5.72 5.97

Normal LOLE (h/year) 635.49 649.40 710.83 608.52 699.55 518.84

Error (%) -9.15 -8.69 -6.13 -11.25 3.27 -4.64

Rayleigh LOLE (h/year) 674.55 676.96 732.51 625.40 712.52 577.65

Error (%) -3.57 -4.81 -3.27 -8.79 5.19 6.17
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with the parametric models, and can be directly applied in

reliability evaluation of power system containing wind

energy.

7 Conclusion

This paper presents a wind speed distribution model

based on the KDE. The model is a kind of data-driven

approach, without any assumptions for distribution mode

of wind speed and flexible to any wind regime. Five years’

actual wind speed data from six sites were used to exam-

ined the the proposed model, Weibull model, Normal

model and Rayleigh model. A statistic R2
a is used as an

index to measure the fit degree of the models to actual wind

speed data.

The accuracy and applicability of the proposed method is

verified using the wind data at six sites. The results indicate

that theKDE can describe thewind speed distributionswith a

high accuracy and excellent robustness. The fitting statistics

of R2
a for six sites are more than 0.99. The average absolute

errors of loss of load expectation (LOLE) and loss of energy

expectation (LOEE) are 0.22% and 0.39%, respectively. The

influence of kernel function onKDE is also investigated. The

result shows that the Gauss kernel always performs better

than the others for wind speed data.

Although KDE is a good NPDE method for estimation

of wind speed distribution, it also has several limitations.

For example, its computational complexity makes the

computation quite tedious and results in that the traditional

KDE method can only deal with small-scale and low

dimension data set. Therefore, our next research direction

is how to solve or mitigate these problems, and build a

multidimensional wind speed model based on KDE.
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