178 research outputs found

    DiMIZA : a dispersion modeling based impact zone assessment of mercury (Hg) emissions from coal-fired power plants and risk evaluation for inhalation exposure

    Get PDF
    Coal-fired combined heat and power plants (CHPPs) serving large districts are among the major sources of mercury (Hg) emissions globally, including Central Asia. Most CHPPs reside on the outskirts of urban areas, thus creating risk zones. The impact of atmospheric Hg levels on health is complex to establish due to the site-specific nature of the relationship between CHPP emissions and hotspots (i.e., localized areas where Hg concentrations greatly exceed its background value). However, a methodological identification of "emission impact zones" for atmospheric Hg emissions from CHPPs with potential adverse public health outcomes has not yet been fully studied. The present work suggests an easy-to-use and cost-free impact zone identification method based on HYSPLIT dispersion modeling for atmospheric Hg emissions from CHPPs. The dispersion modeling based impact zone assessment, DiMIZA, merges short-term dispersion runs (e.g., hourly) into long-term emission impacts (e.g., yearly), which allows to identify the source impact zones. To perform a case study using the suggested method, a CHPP plant in Nur-Sultan (capital of Kazakhstan) was selected. First, traditional ad-hoc measurements were performed to identify the level of dispersions at ground level in different atmospheric stability characteristics. Then, HYSPLIT dispersion model was run for the same days and times of those particular periods when the field measurements were performed. The model results were evaluated via a comparison with the ground measurements and assessed for their atmospheric stability and diel conditions. Due to different emission loads in heating and non-heating periods, two separate pairs of impact zone maps were generated, and public Hg exposure health risks (acute and chronic) were assessed

    Influence of design and media amendments on the performance of stormwater biofilters

    Get PDF
    Biofiltration systems are a promising retrofit option for site-constrained urban areas due to the vertical arrangement of treatment stages that leads to a relatively compact footprint. Existing knowledge about the influence of their design and configuration on hydrological, stormwater pollutant removal and long-term performance is limited and this has been identified as a barrier to their widespread uptake. Long-term simulations of lined and unlined biofiltration systems in four contrasting UK climatic regimes were used to assess the influence of climate, ponding depth, biofilter to drainage area ratio and infiltration rate on hydrological performance. The results showed that local differences in climate have a significant impact on performance and that infiltration rates as low as 0·36 mm/h are not suitable for locations in the UK with high rainfall unless the biofilter to drainage area ratio is greater than 10%. However, with higher infiltration rates (72 mm/h) a biofilter occupying only 3% of the impermeable catchment area would be capable of infiltrating 97% of annual rainfall in central England. Preliminary results of adsorption and column tests to assess the effectiveness of media amendments, specifically zeolite and granular activated carbon, for dissolved copper and phosphate removal are presented in this paper

    Determining the influence of different atmospheric circulation patterns on PM10 chemical composition in a source apportionment study

    Get PDF
    This study combines a set of chemometric analyses with a source apportionment model for discriminating the weather conditions, local processes and remote contributions having an impact on particulate matter levels and chemical composition. The proposed approach was tested on PM10 data collected in a semi-rural coastal site near Venice (Italy). The PM10 mass, elemental composition and the water soluble inorganic ions were quantified and seven sources were identified and apportioned using the positive matrix factorization: sea spray, aged sea salt, mineral dust, mixed combustions, road traffic, secondary sulfate and secondary nitrate. The influence of weather conditions on PM10 composition and its sources was investigated and the importance of air temperature and relative humidity on secondary components was evaluated. Samples collected in days with similar atmospheric circulation patterns were clustered on the basis of wind speed and direction. Significant differences in PM10 levels and chemical composition pointed out that the production of sea salt is strongly depending on the intensity of local winds. Differently, typical primary pollutants (i.e. from combustion and road traffic) increased during slow wind regimes. External contributions were also investigated by clustering the backward trajectories of air masses. The increase of combustion and traffic-related pollutants was observed when air masses originated from Central and Northwestern Europe and secondary sulfate was observed to rise when air masses had passed over the Po Valley. Conversely, anthropogenic contributions dropped when the origin was in the Mediterranean area and Northern Europe. The chemometric approach adopted can discriminate the role local and external sources play in determining the level and composition of airborne particulate matter and points out the weather circumstances favoring the worst pollution conditions. It may be of significant help in designing local and national air pollution control strategies

    Modelling Saharan dust transport into the Mediterranean basin with CMAQ

    Get PDF
    The need for a better quantification of the influence of Saharan dust transport processes on the air quality modelling in the Mediterranean basin led to the formulation of a dust emission module (DEM) integrated into the Air Quality Risk Assessment System for the Iberian Peninsula (SERCA). This paper is focused on the formulation of DEM based on the GOCART aerosol model, along with its integration and execution into the air quality model. It also addresses the testing of the module and its evaluation by contrasting results against satellite products such as MODIS and CALIPSO and ground-level observations of aerosol optical thickness (AOT) and concentration levels of PM10 for different periods in July 2007. DEM was found capable of reproducing the spatial (horizontal and vertical) and temporal profiles of Saharan dust outbreaks into the Mediterranean basin and the Atlantic coast of Africa. Moreover, it was observed that its combination with CMAQ increased the correlation degree between observed and modelled PM10 concentrations at the selected monitoring locations. DEM also enhanced CMAQ capabilities to reproduce observed AOT, although significant underestimations remain. The implementation of CMAQ + DEM succeeded in capturing Saharan dust transport into the Iberian Peninsula, with contributions up to 25 and 14 μg m−3 in 1 h and 24 h average PM10 respectively. The general improvement of total PM10 predictions in Spain are however moderate. The analysis of model performance for the main PM components points out that remaining PM10 underestimation is due to dust local sources missing in the inventories and misrepresentation of organic aerosol processes, which constitutes the main areas for future improvement of CMAQ capabilities to simulate particulate matter within SERCA

    What Can We Learn From Exemplary Groundwater Protection Programs?

    No full text
    corecore