86 research outputs found

    Importance of exposure route for behavioural responses in Lumbriculus variegatus Müller (Oligochaeta: Lumbriculida) in short-term exposures to Pb

    Get PDF
    Abstract Goal, Scope and Background Lumbriculus variegatus Müller (Oligochaeta), a common freshwater sediment-dweller, has frequently been used in toxicokinetic studies, although has been less used in ecotoxicity tests. Methods For the first time the Multispecies Freshwater Biomonitor® (MFB) was applied in a short-term whole-sediment toxicity test. The MFB automatically and quantitatively recorded the spontaneous locomotory behaviour of Lumbriculus variegatus in exposures with two compartments, water and sediment. The study questioned, whether the animals altered their locomotion depending on the compartment which was spiked with lead (Pb). Results and Discussion As in the exposures to Pb-contaminated water/clean sediment, the animals exposed to Pb-contaminated sediment/clean water showed higher activities in intermediate Pb-concentrations. This indicates, that spontaneous locomotory activity is affected by Pb-concentrations at sublethal levels regardless of whether the Pb-concentration is found in the water or in the sediment, because these animals use both environmental compartments simultaneously. However, within the same Pb-levels, the animals showed higher locomotory activity in contaminated water compared with contaminated sediment. This indicates a possible tendency to withdraw from (‘avoidance’) contaminated water into the clean sediment compartment, whereas there was no withdrawal from contaminated sediment into clean water. The latter might be explained by the fact that withdrawal from sediment to water might increase the risk of predation and drift in nature, whereas retracting to sediment might provide shelter. Conclusions The study showed that spontaneous locomotory responses of L. variegatus to Pb depend on whether the water or sediment is contaminated. The study also concluded that the Multispecies Freshwater Biomonitor® can be applied effectively in sediment toxicity testing. Recommendations and Perspectives More emphasis should be given to the interactions of water/sediment in sediment ecotoxicity tests to better simulate field conditions and increase ecological realism in risk assessment, especially as quantitative recording methods exisit

    Hypothesis for the evolution of three-helix Chl a/b and Chl a/c light-harvesting antenna proteins from two-helix and four-helix ancestors

    Full text link
    The nuclear-encoded Chl a/b and Chl a/c antenna proteins of photosynthetic eukaryotes are part of an extended family of proteins that also includes the early light-induced proteins (ELIPs) and the 22 kDa intrinsic protein of PS II (encoded by psb S gene). All members of this family have three transmembrane helices except for the psb S protein, which has four. The amino acid sequences of these proteins are compared and related to the three-dimensional structure of pea LHC II Type I (Kühlbrandt and Wang, Nature 350: 130–134, 1991). The similarity of psb S to the three-helix members of the family suggests that the latter arose from a four-helix ancestor that lost its C-terminal helix by deletion. Strong internal similarity between the two halves of the psb S protein suggests that it in turn arose as the result of the duplication of a gene encoding a two-helix protein. Since psb S is reported to be present in at least one cyanobacterium, the ancestral four-helix protein may have been present prior to the endosymbiotic event or events that gave rise to the photosynthetic eukaryotes. The Chl a/b and Chl a/c antenna proteins, and the immunologically-related proteins in the rhodophytes may have had a common ancestor which was present in the early photosynthetic eukaryotes, and predated their division into rhodophyte, chromophyte and chlorophyte lineages. The LHC I-LHC II divergence probably occurred before the separation of higher plants from chlorophyte algae and euglenophytes, and the different Types of LHC I and LHC II proteins arose prior to the separation of angiosperms and gymnosperms.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43538/1/11120_2004_Article_BF00029382.pd
    • …
    corecore