964 research outputs found

    Phase Space Tomography of Matter-Wave Diffraction in the Talbot Regime

    Full text link
    We report on the theoretical investigation of Wigner distribution function (WDF) reconstruction of the motional quantum state of large molecules in de Broglie interference. De Broglie interference of fullerenes and as the like already proves the wavelike behaviour of these heavy particles, while we aim to extract more quantitative information about the superposition quantum state in motion. We simulate the reconstruction of the WDF numerically based on an analytic probability distribution and investigate its properties by variation of parameters, which are relevant for the experiment. Even though the WDF described in the near-field experiment cannot be reconstructed completely, we observe negativity even in the partially reconstructed WDF. We further consider incoherent factors to simulate the experimental situation such as a finite number of slits, collimation, and particle-slit van der Waals interaction. From this we find experimental conditions to reconstruct the WDF from Talbot interference fringes in molecule Talbot-Lau interferometry.Comment: 16 pages, 9 figures, accepted at New Journal of Physic

    Giant Liquid Argon Observatory for Proton Decay, Neutrino Astrophysics and CP-violation in the Lepton Sector (GLACIER)

    Get PDF
    GLACIER (Giant Liquid Argon Charge Imaging ExpeRiment) is a large underground observatory for proton decay search, neutrino astrophysics and CP-violation studies in the lepton sector. Possible underground sites are studied within the FP7 LAGUNA project (Europe) and along the JPARC neutrino beam in collaboration with KEK (Japan). The concept is scalable to very large masses.Comment: 4 pages, 1 figure, Contribution to the Workshop "European Strategy for Future Neutrino Physics", CERN, Oct. 200

    ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ эффСктивности Π½Π΅ΠΉΡ‚Ρ€ΠΎΠ½Π½ΠΎΠ³ΠΎ Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΈΠ· пластичСского сцинтиллятора o100?200 ΠΌΠΌ

    Get PDF
    РассчитываСтся ΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ провСряСтся ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€Π°. ΠΊ Π½Π΅ΠΉΡ‚Ρ€ΠΎΠ½Π°ΠΌ свСрхвысоких (дСсятки ΠΈ сотни ΠœΡΠ’) энСргий

    The interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons

    Full text link
    We have studied the interaction of polyaromatic hydrocarbons (PAHs) with the basal plane of graphite using thermal desorption spectroscopy. Desorption kinetics of benzene, naphthalene, coronene and ovalene at sub-monolayer coverages yield activation energies of 0.50 eV, 0.85 eV, 1.40 eV and 2.1 eV, respectively. Benzene and naphthalene follow simple first order desorption kinetics while coronene and ovalene exhibit fractional order kinetics owing to the stability of 2-D adsorbate islands up to the desorption temperature. Pre-exponential frequency factors are found to be in the range 101410^{14}-1021sβˆ’110^{21} s^{-1} as obtained from both Falconer--Madix (isothermal desorption) analysis and Antoine's fit to vapour pressure data. The resulting binding energy per carbon atom of the PAH is 52Β±52\pm5 meV and can be identified with the interlayer cohesive energy of graphite. The resulting cleavage energy of graphite is 61Β±561\pm5~meV/atom which is considerably larger than previously reported experimental values.Comment: 8 pages, 4 figures, 2 table

    Development of molecularly imprinted polymer membranes with specificity to triazine herbicides, prepared by the "surface photografting" technique

    No full text
    Β«Surface photograftingΒ» of polypropylene (PPy) microporous membranes by molecularly imprinted polymers selective to triazine herbicides has been carried out by the UV irradiation-initiated co-polymerization of the functional monomer (2-acrylamido-2-methyl-1-propane sulphonic acid) and a cross-linker (N,N?-methylene-bis-acrylamide) in the presence of the template (terbumeton) onto photoinitiator (benzophenone)-coated samples. The grafting reaction occurs in a thin liquid layer on the membrane substrate, which is pre-soaked in a dimethyl formamide solution containing template, functional monomer and cross-linker. After irradiation with a 500 W mercury lamp for 10 min at room temperature, the membranes covered with the layer of imprinted polymer were obtained. The recognition sites complementary to terbumeton were formed in the membranes after extraction of the template molecules with methanol. Alternatively, reference polymeric membranes were prepared with the same monomer composition, but without the template. The membranes' recognition properties were estimated by their capability to herbicide adsorption from its aqueous solution. The membranes modified by the mixture of monomers containing terbumeton showed significantly higher adsorption capability to this herbicide than to analogous compounds (terbuthylazine, atrazine, desmetryn, metribuzine). The effect of the polymer composition on the binding properties of the membranes has been investigated. High affinity of these membranes to triazine herbicides together with their inexpensive preparation, provide a good basis for applications of molecularly imprinted polymer membranes in separation and solid-phase extraction.Π‘ΠΈΠ½Ρ‚Π΅Π·ΠΎΠ²Π°Π½ΠΎ Π½ΠΎΠ²ΠΈΠΉ Ρ‚ΠΈΠΏ ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΠΈΡ… ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€Π½ΠΈΡ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ ΡˆΠ»ΡΒ­Ρ…ΠΎΠΌ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Π΅Π²ΠΎΡ— ΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠ°Ρ†Ρ–Ρ— ΠΌΡ–ΠΊΡ€ΠΎΡ„Ρ–Π»ΡŒΡ‚Ρ€Π°Ρ†Ρ–ΠΉΠ½ΠΈΡ… ΠΏΠΎΠ»Ρ–ΠΏΡ€ΠΎΠΏΡ–Β­ Π»Π΅Π½ΠΎΠ²ΠΈΡ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½, яка полягала Π² нанСсСнні Π½Π° ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΡŽ Ρ‚ΠΎΠ½ΠΊΠΎΠ³ΠΎ ΡˆΠ°Ρ€Ρƒ ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€Ρƒ, сСлСктивного Π΄ΠΎ Ρ‚Ρ€ΠΈΠ°Π·ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ Π³Π΅Ρ€Π±Ρ–Ρ†ΠΈΠ΄Ρƒ Ρ‚Π΅Ρ€Π±ΡƒΠΌΠ΅Ρ‚ΠΎΠ½Ρƒ. ΠœΠ°Ρ‚Ρ€ΠΈΡ‡Π½Ρƒ ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†Ρ–ΡŽ Π·Π΄Ρ–ΠΉΡΠ½ΡŽΠ²Π°Π»ΠΈ Π² Π΄ΠΈΠΌΠ΅Ρ‚ΠΈΠ»Ρ„ΠΎΡ€ΠΌΠ°ΠΌΡ–Π΄Ρ–, Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚ΠΎΠ²ΡƒΡŽΡ‡ΠΈ Π³Π΅Ρ€Π±Ρ–Ρ†ΠΈΠ΄ Ρ‚Π΅Ρ€Π±ΡƒΠΌΠ΅Ρ‚ΠΎΠ½ як ΠΌΠ°Ρ‚Ρ€ΠΈΡ†ΡŽ, 2-Π°ΠΊΡ€ΠΈΠ»Π°ΠΌΡ–Π΄ΠΎ-2-ΠΌΠ΅Ρ‚ΠΈΠ»-1-ΠΏΡ€ΠΎΠΏΠ°Π½-ΡΡƒΠ»ΡŒΡ„ΠΎΠ½ΠΎΠ²Ρƒ Π† ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»ΠΎΠ²Ρƒ Π† Π°ΠΊΡ€ΠΈΠ»ΠΎΠ²Ρƒ кислоту як Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΈΠΉ ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€ Ρ– N ,N' -ΠΌΠ΅Ρ‚ΠΈΠ»Π΅Π½-бісакриламід як зшивальний Π°Π³Π΅Π½Ρ‚ Π½Π° ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– ΠΌΡ–ΠΊΡ€ΠΎΡ„Ρ–Π»ΡŒΡ‚Ρ€Π°Ρ†Ρ–ΠΉΠ½ΠΎΡ— ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ΠΈ, ΠΏΠΎΠΊΡ€ΠΈΡ‚ΠΎΡ— Ρ‚ΠΎΠ½ΠΊΠΈΠΌ ΡˆΠ°Β­Ρ€ΠΎΠΌ Ρ„ΠΎΡ‚ΠΎΡ–Π½Ρ–Ρ†Ρ–ΠΈΡ‚ΠΎΡ€Π° Π±Π΅Π½Π·ΠΎΡ„Π΅Π½ΠΎΠ½Ρƒ. Екстракція ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΠΈΡ… ΠΌΠΎΒ­Π»Π΅ΠΊΡƒΠ» ΡΠΏΡ€ΠΈΡ‡ΠΈΠ½ΡŽΠ²Π°Π»Π° формування Π² структурі ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ΠΈ сай­тів, які Π·Π° Ρ„ΠΎΡ€ΠΌΠΎΡŽ Ρ‚Π° ΠΏΡ€ΠΎΠ΅ΠΏΡŽΡ€ΠΎΠ²ΠΈΠΌ Ρ€ΠΎΠ·Ρ‚Π°ΡˆΡƒΠ²Π°Π½Π½ΡΠΌ Ρ„ΡƒΠ½ΠΊΒ­Ρ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΈΡ… Π³Ρ€ΡƒΠΏ Π±ΡƒΠ»ΠΈ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ€Π½ΠΈΠΌΠΈ Ρ‚Π΅Ρ€Π±ΡƒΠΌΠ΅Ρ‚ΠΎΠ½Ρƒ. ΠšΠΎΠ½Ρ‚Β­Ρ€ΠΎΠ»ΡŒΠ½Ρ– ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ΠΈ ΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΡƒΠ²Π°Π»ΠΈ Π· використанням ΠΏΠΎΠ΄Ρ–Π±Π½ΠΎΡ— ΡΡƒΒ­ΠΌΡ–ΡˆΡ– ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€Ρ–Π², Ρ‰ΠΎ Π½Π΅ містила Ρ‚Π΅Ρ€Π±ΡƒΠΌΠ΅Ρ‚ΠΎΠ½Ρƒ. Π—Π΄Π°Ρ‚Π½Ρ–ΡΡ‚ΡŒ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ Π΄ΠΎ сСлСктивної адсорбції Ρ‚Π΅Ρ€Π±ΡƒΠΌΠ΅Ρ‚ΠΎΠ½Ρƒ дослідТСно Π² залСТності Π²Ρ–Π΄ Ρ‚ΠΈΠΏΡƒ Ρ‚Π° ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†Ρ–Ρ— Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ½ΠΎΒ­ΠΌΠ΅Ρ€Π°, Π° Ρ‚Π°ΠΊΠΎΠΆ Π²Ρ–Π΄ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†Ρ–Ρ— зшивального Π°Π³Π΅Π½Ρ‚Π° Π² ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€Π½Ρ–ΠΉ ΡΡƒΠΌΡ–ΡˆΡ–. Показано, Ρ‰ΠΎ Ρ‚Π΅Ρ€Π±ΡƒΠΌΠ΅Ρ‚ΠΎΠ½-Ρ–ΠΌΠΏΡ€ΠΈΠ½Ρ‚ΠΎΠ²Π°Π½Ρ– ΠΌΠ°Ρ‚Β­Ρ€ΠΈΡ‡Π½Ρ– ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€Π½Ρ– ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ΠΈ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‚ΡŒΡΡ високою ΡΠ΅Π»Π΅ΠΊΒ­Ρ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŽ стосовно Ρ‚Π΅Ρ€Π±ΡƒΠΌΠ΅Ρ‚ΠΎΠ½Ρƒ Ρ‚Π° Π·Π΄Π°Ρ‚Π½Ρ–ΡΡ‚ΡŽ Π΄ΠΎ Π½Π΅Π·Π½Π°Ρ‡Π½ΠΎΡ— адсорбції ΠΉΠΎΠ³ΠΎ структурних Π°Π½Π°Π»ΠΎΠ³Ρ–Π² β€” Ρ‚Π΅Ρ€Ρ‚Π±ΡƒΡ‚ΠΈΠ»Π°Π·ΠΈΠ½Ρƒ, Π°Ρ‚Ρ€Π°Π·ΠΈΠ½Ρƒ, дСсмСтрину Ρ– ΠΌΠ΅Ρ‚Ρ€ΠΈΠ±ΡƒΠ·ΠΈΠ½Ρƒ. Π’Π°ΠΊΡ– властивості синтСзо­ваних ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ Π·Π°Π±Π΅Π·ΠΏΠ΅Ρ‡ΡƒΡŽΡ‚ΡŒ Ρ—Ρ…Π½Ρ” Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Π΅ використання Ρƒ Ρ‚Π²Π΅Ρ€Π΄ΠΎΡ„Π°Π·ΠΎΠ²Ρ–ΠΉ Скстракції.Π‘ΠΈΠ½Ρ‚Π΅Π·ΠΈΡ€ΠΎΠ²Π°Π½ Π½ΠΎΠ²Ρ‹ΠΉ Ρ‚ΠΈΠΏ ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½Ρ‹Ρ… ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ повСрхностной ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΌΠΈΠΊΡ€ΠΎΡ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΏΠΎΠ»ΠΈΠΏΡ€ΠΎΠΏΠΈΠ»Π΅Π½ΠΎΠ²Ρ‹Ρ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½, Π·Π°ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰Π΅ΠΌΡΡ Π² нанСсСнии Π½Π° ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ Ρ‚ΠΎΠ½ΠΊΠΎΠ³ΠΎ слоя ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°, сСлСктивно­го ΠΊ Ρ‚Ρ€ΠΈΠ°Π·ΠΈΠ½ΠΎΠ²ΠΎΠΌΡƒ Π³Π΅Ρ€Π±ΠΈΡ†ΠΈΠ΄Ρƒ Ρ‚Π΅Ρ€Π±ΡƒΠΌΠ΅Ρ‚ΠΎΠ½Ρƒ. ΠœΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΡƒΡŽ ΠΏΠΎΠ»ΠΈΒ­ΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΡŽ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π² Π΄ΠΈΠΌΠ΅Ρ‚ΠΈΠ»Ρ„ΠΎΡ€ΠΌΠ°ΠΌΠΈΠ΄Π΅ с использованиСм Ρ‚Ρ€ΠΈΠ°Π·ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ Π³Π΅Ρ€Π±ΠΈΡ†ΠΈΠ΄Π° Ρ‚Π΅Ρ€Π±ΡƒΠΌΠ΅Ρ‚ΠΎΠ½Π° Π² качСствС ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹, 2-Π°ΠΊΡ€ΠΈΠ»Π°ΠΌΠΈΠ΄ΠΎ-2-ΠΌΠ΅Ρ‚ΠΈΠ»-1-ΠΏΡ€ΠΎΠΏΠ°Π½-ΡΡƒΠ»ΡŒΡ„ΠΎΠ½ΠΎΠ²ΠΎΠΉΡ— ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»ΠΎΠ²ΠΎΠΉ Π°ΠΊΡ€ΠΈΠ»ΠΎΠ²ΠΎΠΉ кислоты ΠΊΠ°ΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€Π° ΠΈ N,N'-ΠΌΠ΅Ρ‚ΠΈΠ»Π΅Π½-Π±ΠΈ сак Ρ€ΠΈΠ»Π°ΠΌ ΠΈΠ΄Π° ΠΊΠ°ΠΊ ΡΡˆΠΈΠ²Π°ΡŽΡ‰Π΅Π³ΠΎ агСнпш Π½Π° повСрхности ΠΌΠΈΠΊΡ€ΠΎΡ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρ‹, ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΎΠΉ Ρ‚ΠΎΠ½ΠΊΠΈΠΌ слоСм Ρ„ΠΎΡ‚ΠΎΠΈΠ½ΠΈΠΈΡˆΡ‚ΡŽΡ€Π° Π±Π΅Π½Π·ΠΎΡ„Π΅Π½ΠΎΠ½Π°. Экстракция ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½Ρ‹Ρ… ΠΌΠΎΠ»Π΅Β­ΠΊΡƒΠ» ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΠ»Π° ΠΊ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ Π² структурС ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρ‹ сай­тов, ΠΊΠΎΠΌΠΏΠ»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ€Π½Ρ‹Ρ… Ρ‚Π΅Ρ€Π±ΡƒΠΌΠ΅Ρ‚ΠΎΠ½Ρƒ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΈ простран­ствСнному Ρ€Π°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Π³Ρ€ΡƒΠΏΠΏ. ΠšΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΒ­ Π½Ρ‹Π΅ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρ‹ синтСзоровали с использованиСм Ρ‚ΠΎΠΉ ΠΆΠ΅ ΠΌΠΎΠ½ΠΎΒ­ΠΌΠ΅Ρ€Π½ΠΎΠΉ смСси Π² отсутствиС Ρ‚Π΅Ρ€Π±ΡƒΠΌΠ΅Ρ‚ΠΎΠ½Π°. Π‘ΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ ΠΌΠ΅ΠΌΒ­ Π±Ρ€Π°Π½ ΠΊ сСлСктивной адсорбции Ρ‚Π΅Ρ€Π±ΡƒΠΌΠ΅Ρ‚ΠΎΠ½Π° исслСдовали Π² зависимости ΠΎΡ‚ Ρ‚ΠΈΠΏΠ° ΠΈ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ½ΠΎΒ­ΠΌΠ΅Ρ€Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΡΡˆΠΈΠ²Π°ΡŽΡ‰Π΅Π³ΠΎ Π°Π³Π΅Π½Ρ‚Π°, Π² ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€Β­Π½ΠΎΠΉ смСси. Показано, Ρ‡Ρ‚ΠΎ Ρ‚Π΅Ρ€Π±ΡƒΠΌΠ΅Ρ‚ΠΎΠ½-ΠΈΠΌΠΏΡ€ΠΈΠ½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½Ρ‹Π΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Π΅ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρ‹ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‚ΡΡ высокой ΡΠ΅Π»Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ ΠΊ Ρ‚Π΅Ρ€Π±ΡƒΠΌΠ΅Ρ‚ΠΎΠ½Ρƒ ΠΈ Π΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΡƒΡŽΡ‚ Π½Π΅Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ Π°Π΄ΡΠΎΡ€Π±Ρ†ΠΈΡŽ Π΅Π³ΠΎ структурних Π°Π½Π°Π»ΠΎΠ³ΠΎΠ² β€” Ρ‚Π΅Ρ€Ρ‚Π±ΡƒΡ‚ΠΈΠ»Π°Π·ΠΈΠ½Π°, Π°Ρ‚Ρ€Π°Π·ΠΈΠ½Π°, дСсмСтрина ΠΈ ΠΌΠ΅Ρ‚Ρ€ΠΈΠ±ΡƒΠ·ΠΈΠ½Π°. Π’Π°ΠΊΠΈΠ΅ свойства синтСзованных ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‚ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΈΡ… эф­фСктивного использования Π² Ρ‚Π²Π΅Ρ€Π΄ΠΎΡ„Π°Π·Π½ΠΎΠΉ экстракции

    Collision Dynamics and Solvation of Water Molecules in a Liquid Methanol Film

    Get PDF
    Environmental molecular beam experiments are used to examine water interactions with liquid methanol films at temperatures from 170 K to 190 K. We find that water molecules with 0.32 eV incident kinetic energy are efficiently trapped by the liquid methanol. The scattering process is characterized by an efficient loss of energy to surface modes with a minor component of the incident beam that is inelastically scattered. Thermal desorption of water molecules has a well characterized Arrhenius form with an activation energy of 0.47{\pm}0.11 eV and pre-exponential factor of 4.6 {\times} 10^(15{\pm}3) s^(-1). We also observe a temperature dependent incorporation of incident water into the methanol layer. The implication for fundamental studies and environmental applications is that even an alcohol as simple as methanol can exhibit complex and temperature dependent surfactant behavior.Comment: 8 pages, 5 figure

    Application to the Analysis of Germinal Center Reactions In Vivo

    Get PDF
    Simultaneous detection of multiple cellular and molecular players in their native environment, one of the keys to a full understanding of immune processes, remains challenging for in vivo microscopy. Here, we present a synergistic strategy for spectrally multiplexed in vivo imaging composed of (i) triple two-photon excitation using spatiotemporal synchronization of two femtosecond lasers, (ii) a broad set of fluorophores with emission ranging from blue to near infrared, (iii) an effective spectral unmixing algorithm. Using our approach, we simultaneously excite and detect seven fluorophores expressed in distinct cellular and tissue compartments, plus second harmonics generation from collagen fibers in lymph nodes. This enables us to visualize the dynamic interplay of all the central cellular players during germinal center reactions. While current in vivo imaging typically enables recording the dynamics of 4 tissue components at a time, our strategy allows a more comprehensive analysis of cellular dynamics involving 8 single-labeled compartments. It enables to investigate the orchestration of multiple cellular subsets determining tissue function, thus, opening the way for a mechanistic understanding of complex pathophysiologic processes in vivo. In the future, the design of transgenic mice combining a larger spectrum of fluorescent proteins will reveal the full potential of our method

    The ArDM experiment

    Get PDF
    The aim of the ArDM project is the development and operation of a one ton double-phase liquid argon detector for direct Dark Matter searches. The detector measures both the scintillation light and the ionization charge from ionizing radiation using two independent readout systems. This paper briefly describes the detector concept and presents preliminary results from the ArDM R&D program, including a 3 l prototype developed to test the charge readout system.Comment: Proceedings of the Epiphany 2010 Conference, to be published in Acta Physica Polonica
    • …
    corecore