1,487 research outputs found

    A comprehensive study of electric, thermoelectric and thermal conductivities of Graphene with short range unitary and charged impurities

    Full text link
    Motivated by the experimental measurement of electrical and hall conductivity, thermopower and Nernst effect, we calculate the longitudinal and transverse electrical and heat transport in graphene in the presence of unitary scatterers as well as charged impurities. The temperature and carrier density dependence in this system display a number of anomalous features that arise due to the relativistic nature of the low energy fermionic degrees of freedom. We derive the properties in detail including the effect of unitary and charged impurities self-consistently, and present tables giving the analytic expressions for all the transport properties in the limit of small and large temperature compared to the chemical potential and the scattering rates. We compare our results with the available experimental data. While the qualitative variations with temperature and density of carriers or chemical potential of all transport properties can be reproduced, we find that a given set of parameters of the impurities fits the Hall conductivity, Thermopower and the Nernst effect quantitatively but cannot fit the conductivity quantitatively. On the other hand a single set of parameters for scattering from Coulomb impurities fits conductivity, hall resistance and thermopower but not Nernst

    Is Small Perfect? Size Limit to Defect Formation in Pyramidal Pt Nanocontacts

    Get PDF
    We report high resolution transmission electron microscopy and ab initio calculation results for the defect formation in Pt nanocontacts (NCs). Our results show that there is a size limit to the existence of twins (extended structural defects). Defects are always present but blocked away from the tip axes. The twins may act as scattering plane, influencing contact electron transmission for Pt NC at room temperature and Ag/Au NC at low temperature.Comment: 4 pages, 3 figure

    The earliest spectroscopy of the GRB 030329 afterglow with 6-m telescope

    Get PDF
    The earliest BTA (SAO RAS 6-m telescope) spectroscopic observations of the GRB 030329 optical transient (OT) are presented, which almost coincide in time with the "first break" (t0.5t\sim 0.5 day after the GRB) of the OT light curve. The beginning of spectral changes are seen as early as 1012\sim 10-12 hours after the GRB. So, the onset of the spectral changes for t<1t<1 day indicates that the contribution from Type Ic supernova (SN) into the OT optical flux can be detected earlier. The properties of early spectra of GRB 030329/SN 2003dh can be consistent with a shock moving into a stellar wind formed from the pre-SN. Such a behavior (similar to that near the UV shock breakout in SNe) can be explained by the existence of a dense matter in the immediate surroundings of massive stellar GRB/SN progenitor). The urgency is emphasized of observation of early GRB/SN spectra for solving a question that is essential for understanding GRB physical mechanism: {\it Do all} long-duration gamma-ray bursts are caused by (or physically connected to) {\it ordinary} core-collapse supernovae? If clear association of normal/ordinary core-collapse SNe (SN Ib/c, and others SN types) and GRBs would be revealed in numbers of cases, we may have strong observational limits for gamma-ray beaming and for real energetics of the GRB sources.Comment: 4 pages, 5 figures. Proceedings of the 4th Workshop "Gamma-Ray Bursts in the Afterglow Era", Roma, 2004 October 18-22, eds. L. Piro, L. Amati, S. Covino, and B. Gendre. Il Nuovo Cimento, in pres

    Multi-wavelength analysis of the field of the dark burst GRB 031220

    Full text link
    We have collected and analyzed data taken in different spectral bands (from X-ray to optical and infrared) of the field of GRB031220 and we present results of such multiband observations. Comparison between images taken at different epochs in the same filters did not reveal any strong variable source in the field of this burst. X-ray analysis shows that only two of the seven Chandra sources have a significant flux decrease and seem to be the most likely afterglow candidates. Both sources do not show the typical values of the R-K colour but they appear to be redder. However, only one source has an X-ray decay index (1.3 +/- 0.1) that is typical for observed afterglows. We assume that this source is the best afterglow candidate and we estimate a redshift of 1.90 +/- 0.30. Photometric analysis and redshift estimation for this object suggest that this GRB can be classified as a Dark Burst and that the obscuration is the result of dust extinction in the circum burst medium or inside the host galaxy.Comment: 7 pages, 5 figures, accepted for publication on A&

    Ulva ohnoi (Ulvales, Chlorophyta) como potencial biofiltro en sistemas de AMTI-RAS: Influencia del pH, reserva alcalina y concentraciones de N y P en su cultivo

    Get PDF
    En el presente trabajo se estudia la influencia de las variaciones de pH, reserva alcalina, concentraciones de nitrógeno y fósforo en el crecimiento en cultivo de Ulva ohnoi con el fin de optimizar su integración en sistemas de AMTI-RASPostprint (published version

    Electronic interactions in fullerene spheres

    Get PDF
    The electron-phonon and Coulomb interactions inC60_{60}, and larger fullerene spheres are analyzed. The coupling between electrons and intramolecular vibrations give corrections 110\sim 1 - 10 meV to the electronic energies for C60_{60}, and scales as R4R^{-4} in larger molecules. The energies associated with electrostatic interactions are of order 14\sim 1 - 4 eV, in C60_{60} and scale as R1R^{-1}. Charged fullerenes show enhanced electron-phonon coupling, 10\sim 10 meV, which scales as R2R^{-2}. Finally, it is argued that non only C60_{60}^{-}, but also C60_{60}^{--} are highly polarizable molecules. The polarizabilities scale as R3R^3 and R4R^4, respectively. The role of this large polarizability in mediating intermolecular interactions is also discussed.Comment: 12 pages. No figure

    Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies

    Get PDF
    Superluminous supernovae (SLSNe) are very bright explosions that were only discovered recently and that show a preference for occurring in faint dwarf galaxies. Understanding why stellar evolution yields different types of stellar explosions in these environments is fundamental in order to both uncover the elusive progenitors of SLSNe and to study star formation in dwarf galaxies. In this paper, we present the first results of our project to study SUperluminous Supernova Host galaxIES, focusing on the sample for which we have obtained spectroscopy. We show that SLSNe-I and SLSNe-R (hydrogen-poor) often (~50% in our sample) occur in a class of galaxies that is known as Extreme Emission Line Galaxies (EELGs). The probability of this happening by chance is negligible and we therefore conclude that the extreme environmental conditions and the SLSN phenomenon are related. In contrast, SLSNe-II (hydrogen-rich) occur in more massive, more metal-rich galaxies with softer radiation fields. Therefore, if SLSNe-II constitute a uniform class, their progenitor systems are likely different from those of H-poor SLSNe. Gamma-ray bursts (GRBs) are, on average, not found in as extreme environments as H-poor SLSNe. We propose that H-poor SLSNe result from the very first stars exploding in a starburst, even earlier than GRBs. This might indicate a bottom-light initial mass function in these systems. SLSNe present a novel method of selecting candidate EELGs independent of their luminosity.Comment: Published version, matches proofs. Accepted 2015 February 13. 23 pages, 8 figures, 4 tables. Minor changes with respect to previous versio

    GRB 021004: Tomography of a gamma-ray burst progenitor and its host galaxy

    Get PDF
    We analyse the distribution of matter around the progenitor star of gamma-ray burst GRB 021004 as well as the properties of its host galaxy with high-resolution echelle as well as near-infrared spectroscopy. Observations were taken by the 8.2m Very Large Telescope with the Ultraviolet and Visual Echelle spectrograph (UVES) and the Infrared Spectrometer And Array Camera (ISAAC) between 10 and 14 hours after the onset of the event. We report the first detection of emission lines from a GRB host galaxy in the near-infrared, detecting H-alpha and the [O III] doublet. These allow an independent measurement of the systemic redshift (z = 2.3304 +/- 0.0005) which is not contaminated by absorption as the Ly-alpha line is, and the deduction of properties of the host galaxy. From the visual echelle spectroscopy, we find several absorption line groups spanning a range of about 3,000 km/s in velocity relative to the redshift of the host galaxy. The absorption profiles are very complex with both velocity-broadened components extending over several 100 km/s and narrow lines with velocity widths of only 20 km/s. By analogy with QSO absorption line studies, the relative velocities,widths, and degrees of ionization of the lines ("line-locking", "ionization--velocity correlation") show that the progenitor had both an extremely strong radiation field and several distinct mass loss phases (winds). These results are consistent with GRB progenitors being massive stars, such as Luminous Blue Variables (LBVs) or Wolf--Rayet stars, providing a detailed picture of the spatial and velocity structure of the GRB progenitor star at the time of explosion. The host galaxy is a prolific star-forming galaxy with a SFR of about 40 solar masses per year.Comment: 11 pages, 5 figures. Accepted for publication in Astronomy and Astrophysics
    corecore