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The electron-phonon and Coulomb interactions in Ceo and larger fullerene spheres are analyzed.
The coupling between electrons and intramolecular vibrations give corrections ~ 1-10 meV to the
electronic energies for Ceo, and scales as R %in larger molecules where R is the radius of the fullerene
sphere. The energies associated with electrostatic interactions are of order ~ 1-4 eV in Cgo and scale

as R71.

Charged fullerenes show enhanced electron-phonon coupling, ~ 10 meV, which scales as

R™2. Finally, it is argued that not only Cgo~, but also Ceo>~ are highly polarizable molecules. The
polarizabilities scale as R® and R*, respectively. The role of this large polarizability in mediating

intermolecular interactions is also discussed.

I. INTRODUCTION

Fullerene molecules are being discovered in an aston-
ishing variety of sizes and shapes. The most frequently
studied fullerene, Cgg shows a number of unexpected elec-
tronic properties, most notably the fact that, when com-
bined with many metallic elements, it gives rise to su-
perconducting compounds. Recently, a number of other
spherical shaped carbon molecules have been found.!:?
In the present work, we discuss the most relevant inter-
actions which influence the highest occupied electronic
states in these molecules.

The analysis is based on earlier work®* (hereafter
referred to as I and II), which proposed a continuum
scheme to analyze the properties of these molecules.
The method makes use of the fact that simple, long-
wavelength approximations to the electronic spectrum of
graphite planes can be made. We showed that it is pos-
sible, in this way, to write down analytical expressions
for the highest occupied and lowest unoccupied states of
Cgo. Moreover, the method is more accurate for larger
molecules. In I, a brief outline of its usefulness for the
study of the coupling between electrons and lattice vi-
brations was also sketched.

In Sec. II, we describe the most relevant features of
the electronic states of Cgg. The next section deals with
the main properties of the coupling between electrons
and phonons in neutral molecules. Section IV analyzes
the electrostatic coupling between the electrons. Section
V describes the electron-phonon couplings which appear
in charged molecules. In Sec. VI we discuss the elec-
tronic polarizability of these molecules, and the interac-
tions which may be relevant in a crystalline structure.
The main conclusions are analyzed in Sec. VII.

II. THE ELECTRONIC STATES OF Cgo

The electronic properties of conjugated carbon com-
pounds are determined by the states derived from the
unsaturated 7 orbitals at each carbon atom. The very
successful Hiickel model® uses this fact to describe a large
variety of such materials, from benzene to conjugated
polymers, like polyacetylene, to graphite. The most im-
portant parameter in the model is the hybridization en-
ergy between orbitals placed at nearest-neighbor carbons,
which we will take as t ~ 2.2 eV. Longer-range hybridiza-
tions are neglected. The remaining three valence elec-
trons in each C atom give rise to covalent o bonds. These
bonds give rigidity to the lattice. Their spring constant,
K, is also well known, which allows a simple approxi-
mation to the vibration spectra of materials with only
carbons, like graphite. We will assume for the highest
frequency, wopt = 3/ K/M = 0.20 eV (M is the mass
of a C atom). The electronic states derived from the
7 orbitals are affected by the lattice vibrations, because
they modify the distance between nearest atoms. This
coupling is described by the variation of the hybridiza-
tion t with distance. We will take dt/dl = 4.5 eV A~L.
There is a greater controversy about the value of the on-
site Coulomb repulsion, when two electrons occupy the
same 7 orbital. In isolated fullerene molecules, metallic
screening is absent, and the long-range electrostatic inter-
actions dominate. We expect also no metallic screening
at distances shorter than the intermolecule distance in
Ceo crystals. In contrast, screening effects will be sig-
nificant in onionlike compounds, where the spheres are
stacked inside each other.

The Hiickel model, when applied to a plane of graphite,
gives rise to two electronic bands which intersect at two
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inequivalent points of the Brillouin zone. Near these
points, the spectrum can be written as ¢ = hvp|k|,
where vp = 3ta/h, and a is the distance between near-
est carbon atoms. As discussed in I and II, this dis-
persion relation can be seen as arising from an effec-
tive long-wavelength equation, which is nothing but the
Dirac equation in (2+1) dimensions. The two inequiva-
lent points of the Brillouin zone lead to two independent
equations. The components of each spinor correspond to
the amplitude of the wave function in each of the two
sublattices in which the honeycomb structure can be di-
vided.

This long-wavelength approximation can be extended
to spherical fullerenes. Naively, one would expect that
the electronic states will be given by the solutions of the
(2+1) Dirac equation on the surface of a sphere. The
presence of pentagons in the lattice modifies this picture.
When going around one of them, the two sublattices are
interchanged. One of the components of the spinor asso-
ciated with one point of the Brillouin zone is changed into
the other component of the spinor associated with the
second point. This effect can be included by means of an
auxiliary gauge potential, whose magnetic flux threads
each of the pentagons. Because of the mixing of the
two electron spinor components, this field is non-Abelian.
However, as discussed in II, a transformation is possible,
which changes the two coupled Dirac equations into two
decoupled ones, which include an Abelian monopole of
opposite charge, Q = £3/2.

These equations can be solved analytically, by means
of suitably defined angular momentum operators. The
resulting spectrum has two degenerate triplets at € =
0, and a succession of higher multiplets, with degen-
eracies 2 x (2§ + 1), = 2,3,... and energies ¢; =
+vp/R\/3(j +1) — 2. R is the radius of the molecule.
The wave functions described by this long-wavelength ap-
proximation correspond to the envelope of the real wave
functions. In order to recover the tight-binding states,
one has to multiply the continuum wave functions by a
rapidly fluctuating phase, determined by the Bloch states
of a plane of graphite at the corners of the Brillouin zone.
This phase can be obtained by inverting the procedure
discussed in II: The atomic sites of Cgo can be thought
of as the sites of a honeycomb lattice wrapped over the
surface of an icosahedron. The surface of the icosahedron
can be unfolded, and projected onto a plane. Then, the
initial atomic positions fill sites of an extended, planar,
honeycomb lattice. The phases of each spinor at each
site can be described in terms of the phases of the Bloch
states from the corners of the Brillouin zone of planar
graphite. The phase change between two nearest equiv-
alent sites is +2m/3.

As extensively analyzed in I and II, this spectrum is
a reasonably good approximation to spherical carbon
fullerenes, becoming more accurate as the number of
atoms in the molecule increases. In particular, for Ceo,
the two degenerate triplets at ¢ = 0 mentioned above
can be identified with the lowest low-lying molecular or-
bitals in the molecule. The fact that these two triplets
are split in Cgp, and that they are not strictly at € = 0,
can be understood as arising from the next leading cor-
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rections to the Dirac equation. These corrections modify
the spectrum of graphite away from the Fermi points.
They contain additional derivatives. When included into
our effective Dirac equation for the spherical fullerenes,
they give rise to a coupling between the two triplets, and
an overall shift. The fact that this interpretation is cor-
rect can be seen from the way in which these terms scale
with the radius of the molecule. The splitting of the two
triplets shows the expected R~2 dependence for all sizes,
including Cgg. The behavior of the average energy is
more involved, and the proposed scaling seems to set in
only for large sizes (Cs40 and beyond).

In this way, we complete our description of the two
lowest unoccupied triplets in Cgp and related molecules.
In lowest order, they correspond to the states at zero of
the Dirac equation on the surface of a sphere, with an
additional monopole of charge Q@ = +3/2. Their wave
functions are

%10 = 1/ sin®(§)e?, \Ilf_l,a =0,
§o=1/sin(§) cos(%), \Ilg‘a =0,
v, = 1/53;r-cos2(%)e‘i¢, ‘1’81@ =0,

a — B8 — 3 2060\ ,1
0%, ,=0, UL, o=/ a=cos?(§)e ¢,

\Ilg,b = 0,
2, 5=0,

The superscripts a and (3 refer to the two components
of each spinor, and the subscripts label each of the six
different wave functions.

The residual interactions described earlier can be pro-
jected onto the subspace spanned by these six states.
There is a global shift, which scales as k1t(Ro/R)?, and
a hybridization between spinors of type a and b with
the same angular momentum. It can be written as
k2(Ro/R)2. Ry is the radius of Cgo, and the dimension-
less coefficients k; and ko can be deduced from the spec-
trum of Cgg. Their values are 1.53 and 0.09, respectively.

III. ELECTRON-PHONON INTERACTION
IN NEUTRAL MOLECULES

We now describe the influence of the various lattice vi-
brations in the states given in Eq. (1). It is interesting
to note first that the hopping ¢, and any modulation of
it, couple orbitals in different sublattices. To lowest or-
der, the orbitals given by (1) represent electronic states
which combine wave functions derived from one point in
the Brillouin zone and one sublattice, and wave functions
from the other point and the other sublattice. The hop-
ping does not mix them, and that is why their energies
are at zero. Thus, the only electron-phonon interactions
possible, for these triplets, arise from the modification,
by the phonons, of the next-order terms, which were de-
scribed before. This effect was not properly included in
I

The states in Eq. (1) are delocalized throughout the
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sphere, and change little from site to site. Hence,
they will only couple to long-wavelength phonons. The
graphite planes, which we use as a starting point, have
two acoustic and two optical branches near the center of
the Brillouin zone, which we will consider separately.

The acoustical modes are well described by the elas-
tic theory of spherical shells, as mentioned in I. They
can be parametrized in terms of fields which give the
lattice displacements at each point in the sphere: u =
[ur(8, ®),ug(0, P),us(6, d)]. On general grounds, we can
classify them using vector spherical harmonics for the
functions ug and ug, and ordinary spherical harmonics
for u,. For each value of I and m, the calculation of
the eigenmodes is reduced to the diagonalization of a
3 x 3 matrix. The simplest vibration is the breathing
mode, | = m = 0,u, = u,usg = ug = 0. This mode
simply changes the radius of the sphere. We know that
the lowest-order coupling possible is through the modi-
fication of the electronic interactions within the triplets
which decay like R~2, as discussed in the previous sec-
tion. Thus, it is straightforward to describe the coupling
of the breathing mode to the lowest-lying triplets given
in Eq. (1). To leading order in u/R, their mean energy
and splitting depend on u as

@)
Ae =k, Zulls’.

For a general mode, the coupling to the electrons can
only depend on the strain tensor, given by

ug,6 = Ur + Ogug,

_ 8¢u¢ cos(0)
Ue,g = Ur + sin(d) ~ sin(4) ue (3)
0
o = Botis + Opug  cos(6)

sin(9)  sin(8) He:

We now make the assumption that the way the strain
tensor changes the electronic levels is through its only
scalar contraction, ug ¢ + ugs,¢. Physically, this quantity
describes the local variation in the area of the sphere.
Generalizing the coupling to the breathing mode, dis-
cussed before, and particularizing in the changes in €,
which is the largest effect, we write

ot *
Hel—phon(acc) = 2k1'5z Z /(UG,O + u¢’¢)\11? \I’za (4)
a,t

For an elastic vibration with a given I and m, ugg +
Ug,¢ X Y™ (6, $). Given the shape of the wave functions
[Eq. (1)], this result implies that only modes with [ =
0,1,2 couple to them.

We can now estimate the change in the electronic lev-
els due to each lattice mode, using second-order pertur-
bation theory. From (u?) = A/(2Mw) (M is the mass
of the molecule) the characteristic energy shift induced
by a mode of frequency w is (k18t/8l)%/(2Mw?). For
Ceo, typical phonon frequencies are in the range 500—
1000 cm~!. The associated shifts are of order 1-5 meV.
The dimensionless electron-phonon coupling parameter,

F. GUINEA, J. GONZALEZ, AND M. A. H. VOZMEDIANO 47

A, is < 0.1 per mode.

In larger molecules, M ~ R? and w ~ R~!. Hence,
the shifts will decay as R~ and A ~ R=3/2, Note that
the number of acoustic modes which couple to the states
studied here does not scale with the size of the molecule,
because the characteristic dimension of the electronic
wave function is always proportional to the radius of the
sphere.

The estimates discussed before point to a weak cou-
pling between the acoustical modes-and the lowest-lying
electronic states of spherical fullerenes. This effect can be
traced back to the low density of states of graphite near
the Fermi level. For instance, the lowest-order coupling
between the triplets in Eq. (1) and phonons vanishes,
but is finite for other multiplets at higher energies. Fur-
thermore, the extended nature of these wave functions
implies that few modes can couple to them.

In molecules with one or two electrons in these states,
another effect may arise. As discussed in I, the degen-
eracy of the allowed states gives rise to a Berry phase
which modifies the quantization rules for the lattice vi-
brations. The combined electron and phonon wave func-
tion changes its symmetry with respect to the case of
no electron degeneracy. As a consequence, Raman and
infrared modes are exchanged, an effect which can be
verified experimentally.

Finally, we discuss the coupling to optical modes. At
each point in the sphere they can be characterized by
its polarization, longitudinal or transverse, which can be
defined as a two-dimensional vector field, n(0,¢). We
will neglect the out-of-the-sphere modes. It is simple to
calculate the coupling between this field and the spinors
which describe the electronic states in planar graphite.
It gives rise to a term in the Hamiltonian,

Hel-opt = /'Jjand"a (5)

where the o’s are the Pauli matrices. As in the case
of the acoustical modes, this term does not modify, to
lowest order, the triplets given in Eq. (1).

We can estimate the residual coupling by explicitly
changing the hoppings in the discrete Hamiltonian which
describes Cgg, simulating the presence of an optical
phonon. The simplest such mode alters the pentagon-
hexagon and the hexagon-hexagon bonds in opposite di-
rections. In order for the area of the sphere to stay con-
stant, the pentagon-hexagon bond deformation should
be close to one-half that of the hexagon-hexagon bonds.
The change in the average energy of the lowest triplets,
with respect to such a modification of the hoppings, is
0e/0t = 0.9. On general grounds we can expect this
derivative to be of order unity. In our continuum formu-
lation, such coupling can be incorporated into the for-
malism by a term

ot Oy
Hel-phon(opt) = 2k35[ Z /( Ogng + Silﬁ(&%

cos(6)
sin(0)

where k3 = 0.9. As in the case of acoustical phonons,

+ ng) TTe,  (6)
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this expression makes clear that only modes with small
l,m values couple to the triplets considered here.

The change in the energy of the electronic states is
~ (k30t/01)?/(2Mw2,;). Taking wopy = 0.20 eV, this
energy is ~ 40 meV. The dimensionless coupling A is
~ 0.2 — 0.3 per mode. These values for the energies and
dimensionless couplings should be independent of the size
of the molecule. Note that wypt does not scale with R,
and M ~ R2.

The combined coupling to all phonons compares well
with more detailed calculations for Cgo.5™8 Our definition
of the dimensionless coupling X is 8t/8l/h/(Mw?) /(hw),
where w is the frequency of the mode under consideration.
This is equivalent to the formulas used in Refs. 6-8, in
the limit when the coupling is local and the electronic
bandwidth tends to zero.

IV. COULOMB INTERACTIONS IN CHARGED
FULLERENES

From Eq. (1) it is simple, although tedious, to calculate
the different Coulomb integrals between orbitals. The
needed integrals are discussed in the Appendix. A vari-
ety of estimates are available in the literature, and our
results come close to those reported in Ref. 9. In fact, if
we neglect the splitting between the two triplets, we ob-
tain, for Cgo2~, exactly the same succession of multiplets
as in that reference, in what is called also the continuum
approximation. We believe that the scheme used in Ref. 9
is equivalent to ours, in that the same wave functions are
used. Thus, for Cep?~ the lowest configurations are two
ls, and ls_ singlets at 3e2/5Ry, followed by two 3p, and
3p_ triplets, at 7e2/10Ry. The splitting between these
two sets of configurations is generated by the second-
order term which couples the one-electron triplet states,
discussed after Eq. (1). An effective Hamiltonian which
describes each symmetry (*s and 3p) is given in the Ap-
pendix. These terms are also responsible for the splitting
of the triplets in Cgp~. In the doubly ionized molecule,
however, this term induces a much weaker effect. The
coupling of the two degenerate singlets is through an in-
termediate state at 8¢2/5Ry, and the coupling between
the triplets is mediated by another triplet at 6e?/5Rp.
In both cases, the splitting goes like Ae?/(e?/Ry). For
large fullerenes, Ae ~ R~2, and this splitting decays like
R~3. Further details can be found in the Appendix.

Our method is sufficiently simple to allow us to cal-
culate electrostatic energies of molecules with higher
charge. For Cgo3~, we find, at low energies, two %s
multiplets. The electrostatic energy is 21e2/10Ry. The
splitting between these two configurations is even smaller
than in Ceo?~, and goes like Ae®/(e?/Rp)2. For large
fullerenes, this value scales as R~%. In molecules with
higher ionization, the splittings grow again.

Finally, our simple form for the wave functions (1)
allows us to characterize the charge distribution of the
molecule. The two orbitals with angular momentum in
(1) carry an electric dipole, eRp/2. It is easy to show that
the two 3p multiplets discussed for Cgo?~ carry the same
dipole. The existence of these large dipoles is an amusing
consequence of the fact that the orbitals given in (1) sim-

16 579

ulate the state of electrons in a fictitious magnetic field,
described by the monopole. These orbitals are not chiral
invariant. A given angular momentum also induces an
electric dipole. The terms responsible for the mixing of
these orbitals restore the chiral symmetry. As mentioned
before, the influence of these terms is significantly re-
duced in Cgo?~ and Cgo3~, and in larger fullerenes. The
relevance of these dipoles for intermolecular interactions
will be discussed in Sec. VI.

The scale of electrostatic energies, given the radius
of Cgo, Ro ~ 35 A is large, ~ 3 eV. We have not
investigated the extent to which the level structure of
the spheres needs to be modified. For larger fullerenes,
both the separation between one-electron levels and the
Coulomb energies scale in the same way, ~ R™!, so both
remain comparable for all sizes.

An alternative method, used to classify the multiplets
of the Cgp molecule, is to use spherical harmonics and
crystal-field terms.'®1! This scheme is equivalent to us-
ing a continuum approximation for the bottom of the
graphite band (the point k = 0 in the Brillouin zone),
and filling all the levels up to the required charge state.
Our method has the right multiplicity and symmetry for
the relevant orbitals near the neutral state, as it starts
from an approximation which describes graphite near its
Fermi energy. Moreover, the separation between levels,
which in other schemes arises from crystal-field effects,
appears in a natural way, and its scaling as a function of
size can be easily investigated. In that respect, we differ
somewhat from the assumptions about scaling in Ref. 11.

In onion-shaped materials, the energy levels are af-
fected by the tunneling between contiguous layers. The
energy of these processes is, in graphite, ~ 0.3 eV.12 The
Coulomb interactions will be more drastically changed
by the appearance of screening effects.

V. ELECTRON-PHONON INTERACTION
IN CHARGED FULLERENES

In charged fullerenes, the deformations of the lattice-
induce rearrangements in the charge distribution, which
modify the Coulomb energies. As discussed in the pre-
vious section, these energies are important, so that this
effect needs to be taken into account. This effect is unique
to systems like the doped fullerenes, which combine local-
ized electronic states and inhomogeneous charge distribu-
tions. Hence, other conjugated compounds, like graphite
intercalates, offer no clue to the strength of this coupling.

These modifications in the charges over scales compa-
rable to the size of the molecule can only be induced by
long-wavelength acoustical phonons. Optical modes re-
distribute the charge within each unit cell, but do not
alter the overall charge distribution.

The leading effect of a deformation of the lattice is to
change locally the area element. The charge density in
that region is then modified. Again, we can discuss this
effect by taking the simplest lattice vibration, the breath-
ing mode, as an example. The area of the sphere is ex-
panded or contracted, and the Coulomb energies change
due to the variation in the radius of the sphere. There
is no effect in Cgo~. In Cgp%~, the change of energy as-
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sociated with a vibration of amplitude u is ~ e?u/R3.
For a general mode, the charge density at a given place
decays as the area element increases. The local expan-
sion induced by a given mode is ug,¢ + ug,4. Thus, we
have to insert this expression in the Coulomb integrals
between different orbitals. As in the case of the standard
coupling to acoustical phonons, this result implies that
only vibrations with [ < 4 can couple to the triplets given
by Eq. (1).

We can make an estimate of the energy shift in the elec-
tronic levels in the same way as in the case of the modifi-
cation in the hybridization due to the vibration. The only
difference is that the factor (k;0t/01)? has to be replaced
by (e2/R2)2. The second factor is larger by a factor of
8-10. Thus, the energy scales at which this coupling can
play a role are ~ 20-40 meV. The values of the dimen-
sionless constant A will become ~ 0.8 — 1. These interac-
tions are significantly larger than the standard electron-
phonon couplings. The energies should scale as R=4 for
large molecules, and the values of A as R—3/2,

VI. INTERACTIONS BETWEEN DIFFERENT
FULLERENE MOLECULES

So far, we have discussed the various electronic interac-
tions within a given fullerene molecule. It is interesting
to analyze which ones may play a role when different
molecules are close to each other. As the most impor-
tant influence that we have found is due to the Coulomb
interaction, we will analyze further its role in this case.

We will assume that charge that the fullerenes may
have is compensated by some neutralizing background,
so that the only residual interaction is due to the van
der Waals forces. Then, the relevant magnitude is the
electrical polarizability of the molecules. As mentioned
in Sec. IV, Cgp~ is highly polarizable, a result also dis-
cussed in Ref. 9. Also, Cgo%~ has a large polarizabil-
ity, if the molecule is in a 3p state. An estimate of the
polarizabilities of various charged states of fullerenes is
given in Table I. These polarizabilities are due to the ex-
tra electrons which are present in charged Cgg molecules.
The polarization of the closed shell in neutral Cgg has
been estimated!® to be ~ 80 A® ~ 300 a.u., that is, sig-
niﬁc2antly smaller than the values we find for Cgp~ and
Ceo“™.

The high polarizability of Cgp2~ can play a role, if

TABLE I. Typical energy scales associated with the var-
ious interactions discussed in the text, for Cgo, and scaling
of each of them as function of molecule radius, for larger
fullerenes.

Interaction I Energy l Scaling
Electron-phonon (acoustic) 0.004 eV R
Electron-phonon (optical) 0.04 eV R

Coulomb 3-6 eV R
Electron-phonon (in charged molecules) 0.1 eV R
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the interaction between neighboring molecules overcomes
the energy difference between the s and the 3p con-
figurations. This difference is €?/(10Rp) ~ 0.5 eV, as
discussed in Sec. IV. The van der Waals interaction be-
tween two molecules at distance D is ~ e*R}/(4D%,),
where €, is the splitting between the two 3p configura-
tions, ~ 2Ae2/(e?/Ry) (see the Appendix for details of
the calculation). Hence, the van der Waals energy is
~ 5eSR3/(4D%A€?), where Ae ~ 0.40 eV, as discussed
in Sec. II. Even for D = 4Ry, this energy is ~ 0.2 eV,
and increases rapidly at shorter distances. Thus, it is
not inconceivable that Cgog2~ will exist in its 3p state in
a doped crystal, and neighboring molecules will interact
strongly through their mutual dipoles.

VII. CONCLUSIONS

We have investigated the various interactions which
may influence the electronic properties of a fullerene
molecule. The relevant energies and the scaling as a func-
tion of molecule size are given in Table II.

Our results suggest that the most relevant effects will
arise from the Coulomb interactions. The weakness of
the electron-phonon coupling can be related to a similar
effect in graphite, due to the vanishing density of states
near the Fermi points. Phonons can only play a signif-
icant role in charged molecules, where they modify the
charge distribution.

On the other hand, long-range Coulomb interactions
have no counterpart in other conjugated compounds.
The most studied charged (through doping) carbon sys-
tems, graphite intercalation compounds and polyacety-
lene, do not show these features. In both cases, the rel-
evant electronic states are delocalized, and are not sus-
ceptible to charging effects.

We have pursued further the role of Coulomb inter-
actions in crystalline systems. The most striking effect
that we have found is the extremely high polarizability
of Cgop?~ molecules. This property leads to significant
intermolecular interactions at distances ~ 3 — 4 times
the radius of the molecule. The scale of these couplings,
~ 0.3-3 eV, can easily overcome most other efffects in
a doped Cggo crystal, and may be even responsible for
the unusual dipolar moments found in neutral Cgo.1* Its
role in other properties, like superconductivity, is being
further investigated.

TABLE II. Polarizability (of the valence electrons) in dif-
ferent charge states of Ceo (in atomic units), and scaling be-
havior for larger molecules.

Charge state | Polarizability (in a.u.) | Scaling

Neutral ( 's ) 0 R°
le (%) 10% R*
2e” (1s) 0 R°
2e” (3p) 10° RS
3e (%) 0 R°
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APPENDIX: CALCULATION OF COULOMB
INTEGRALS

The Coulomb integrals required to evaluate the ener-
gies of the various configurations of charged Cgp can be
obtained from the wave functions given in Eq. (1). We
denote the six orbitals in that equation as |a, +1), |a,0),
la, —1), |b,+1), |b,0), and |b, —1), where we are omitting
spin indexes. The Coulomb potential can be expanded
in spherical harmonics, 1/|r; — ra] = 4w ), 1/(20 +
1) 3, Y7 ™(#1)Y;"(#2), where we are using the fact that
|r1] = |r2] = 1, and we use units such that Ry = 1.
Then, the seven different Coulomb integrals are (in units

of €2/Ry):

—_ _ 63
Va+1,a+1;a+1,a+1 = Va+1l,a+1;6—-1,b—1 = 37>
_ _ 49
Va+1,a+1;a0,a0 = VYa+1,a+1;60,60 = Eg
— _ 19
Va+1,a+1;a—1,a—1 = Va+1,a+1;b+1,b+1 = 35
_ T
Va+1,a0;a+1,a0 = 35> (Al)
__1
Va+1,a0;6+1,60 = —5g>

_ 3
Va+1l,a—1;a+1,0—1 = %>

— _ 26
V20,20;20,a0 = V20,a0;b0,60 = 355-

The remaining integrals can be obtained by exchanging
the a and b indices.

As mentioned in Sec. IV, this procedure leads to the
multiplet energies for Cgo?~ discussed in Ref. 9. The
wave functions with s symmetry are
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|1)=%(|a+1]‘,a—1 1) = 1a01,a0 |)
+la—-1T,a+11)),
1
|2)=%(|a+1T,b—'1 —la+1lb-11)
+la—17,0+1])=Ja—-1},b+17)
—|a0 1,50 |) + |a0 |, 50 1), (A2)

B):i%0b+1hb—ll)—w0%boﬂ

+bp—1T,b+11)).
These three states are mixed by the term in the Cgg
Hamiltonian which gives rise to the splitting of the two
triplets, Ae. Thus, we end up with the matrix

382 Ae 0

His=| 75 5/ 3 (A3)

Similarly, the states with 3p symmetry are
1)=|a+1T1,a0 1),

1
12) =7_§(|a+1 1,00 1)+ |b+11,a0 1)),

[3)=b+11,001),
and the corresponding effective Hamiltonian is

7e?2  Ae 0
10R, 7§
— Ae 6e Ac
Hs,,

V2 5Re V2
0 Ae _Te?
/3 10Ro
For the purposes of the discussion in Sec. VI, it is im-
portant to realize that the states (1) and |3) in (A4) carry
an electric dipole, +eRg/2.

(A4)

(A5)

*On leave from Instituto de Ciencia de Materiales, CSIC,
Cantoblanco, 28049 Madrid, Spain.
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