2,988 research outputs found

    Developing a community-based intervention to improve quality of life in people with colorectal cancer: a complex intervention development study

    Get PDF
    Objectives: To develop and pilot a theory and evidence-based intervention to improve quality of life (QoL) in people with colorectal cancer. Design: A complex intervention development study. Setting: North East Scotland and Glasgow. Participants: Semistructured interviews with people with colorectal cancer (n=28), cancer specialists (n=16) and primary care health professionals (n=14) and pilot testing with patients (n=12). Interventions: A single, 1 h nurse home visit 6–12 weeks after diagnosis, and telephone follow-up 1 week later (with a view to ongoing follow-up in future). Primary and secondary outcome measures: Qualitative assessment of intervention feasibility and acceptability. Results: Modifiable predictors of QoL identified previously were symptoms (fatigue, pain, diarrhoea, shortness of breath, insomnia, anorexia/cachexia, poor psychological well-being, sexual problems) and impaired activities. To modify these symptoms and activities, an intervention based on Control Theory was developed to help participants identify personally important symptoms and activities; set appropriate goals; use action planning to progress towards goals; self-monitor progress and identify (and tackle) barriers limiting progress. Interview responses were generally favourable and included recommendations about timing and style of delivery that were incorporated into the intervention. The pilot study demonstrated the feasibility of intervention delivery. Conclusions: Through multidisciplinary collaboration, a theory-based, acceptable and feasible intervention to improve QoL in colorectal cancer patients was developed, and can now be evaluated

    Identification of a non-purple tartrate-resistant acid phosphatase: an evolutionary link to Ser/Thr protein phosphatases?

    Get PDF
    BACKGROUND Tartrate-resistant acid phosphatases (TRAcPs), also known as purple acid phosphatases (PAPs), are a family of binuclear metallohydrolases that have been identified in plants, animals and fungi. The human enzyme is a major histochemical marker for the diagnosis of bone-related diseases. TRAcPs can occur as a small form possessing only the ~35 kDa catalytic domain, or a larger ~55 kDa form possessing both a catalytic domain and an additional N-terminal domain of unknown function. Due to its role in bone resorption the 35 kDa TRAcP has become a promising target for the development of anti-osteoporotic chemotherapeutics. FINDINGS A new human gene product encoding a metallohydrolase distantly related to the ~55 kDa plant TRAcP was identified and characterised. The gene product is found in a number of animal species, and is present in all tissues sampled by the RIKEN mouse transcriptome project. Construction of a homology model illustrated that six of the seven metal-coordinating ligands in the active site are identical to that observed in the TRAcP family. However, the tyrosine ligand associated with the charge transfer transition and purple color of TRAcPs is replaced by a histidine. CONCLUSION The gene product identified here may represent an evolutionary link between TRAcPs and Ser/Thr protein phosphatases. Its biological function is currently unknown but is unlikely to be associated with bone metabolism.This work was funded by the Royal Society of Tropical Medicine and Hygiene through a Dennis Burkitt Fellowship to JJM. ARD is supported by the Economic and Social Research Council. JJM is supported by a Wellcome Trust Research Training Fellowship (GR074833MA)

    “An ethnographic seduction”: how qualitative research and Agent-based models can benefit each other

    Get PDF
    We provide a general analytical framework for empirically informed agent-based simulations. This methodology provides present-day agent-based models with a sound and proper insight as to the behavior of social agents — an insight that statistical data often fall short of providing at least at a micro level and for hidden and sensitive populations. In the other direction, simulations can provide qualitative researchers in sociology, anthropology and other fields with valuable tools for: (a) testing the consistency and pushing the boundaries, of specific theoretical frameworks; (b) replicating and generalizing results; (c) providing a platform for cross-disciplinary validation of results

    Morphology of axisymmetric vesicles with encapsulated filaments and impurities

    Full text link
    The shape deformation of a three-dimensional axisymmetric vesicle with encapsulated filaments or impurities is analyzed by integrating a dissipation dynamics. This method can incorporate systematically the constraint of a fixed surface area and/or a fixed volume. The filament encapsulated in a vesicle is assumed to take a form of a rod or a ring so as to imitate cytoskeletons. In both cases, results of the shape transition of the vesicle are summarized in phase diagrams in the phase space of the vesicular volume and a rod length or a ring radius. We also study the dynamics of a vesicle with impurities coupled to the membrane curvature. The phase separation and the associated shape deformation in the early stage of the dynamical evolution can well be explained by the linear stability analysis. Long runs of simulation demonstrate the nonlinear coarsening of the wavy deformation of the vesicle in the late stage.Comment: 9 pages, 9 figure

    Media Witnessing: Exploring the Audience of Distant Suffering

    Get PDF
    This article aims at demonstrating the relevance of the concept of ‘media witnessing’ as an analytical lens for the study of audience engagement with media reports of distant suffering. Drawing upon existing theoretical work on the concept, the article approaches media witnessing as a distinct modality of audience experience and constructs an analytical framework for its study. Applying this framework on an empirical study of Greek audiences, the article provides a typology of witnessing, consisting of four different types of audience engagement with media stories of human suffering. This typology illustrates the complexities inherent in the practice of watching suffering on television, as well as the limitations of mediated cosmopolitan imagination

    Electromagnetic wormholes via handlebody constructions

    Full text link
    Cloaking devices are prescriptions of electrostatic, optical or electromagnetic parameter fields (conductivity σ(x)\sigma(x), index of refraction n(x)n(x), or electric permittivity ϵ(x)\epsilon(x) and magnetic permeability μ(x)\mu(x)) which are piecewise smooth on R3\mathbb R^3 and singular on a hypersurface Σ\Sigma, and such that objects in the region enclosed by Σ\Sigma are not detectable to external observation by waves. Here, we give related constructions of invisible tunnels, which allow electromagnetic waves to pass between possibly distant points, but with only the ends of the tunnels visible to electromagnetic imaging. Effectively, these change the topology of space with respect to solutions of Maxwell's equations, corresponding to attaching a handlebody to R3\mathbb R^3. The resulting devices thus function as electromagnetic wormholes.Comment: 25 pages, 6 figures (some color

    Visual onset expands subjective time

    Get PDF
    We report a distortion of subjective time perception in which the duration of a first interval is perceived to be longer than the succeeding interval of the same duration. The amount of time expansion depends on the onset type defining the first interval. When a stimulus appears abruptly, its duration is perceived to be longer than when it appears following a stationary array. The difference in the processing time for the stimulus onset and motion onset, measured as reaction times, agrees with the difference in time expansion. Our results suggest that initial transient responses for a visual onset serve as a temporal marker for time estimation, and a systematic change in the processing time for onsets affects perceived time

    Wind Energy and the Turbulent Nature of the Atmospheric Boundary Layer

    Full text link
    Wind turbines operate in the atmospheric boundary layer, where they are exposed to the turbulent atmospheric flows. As the response time of wind turbine is typically in the range of seconds, they are affected by the small scale intermittent properties of the turbulent wind. Consequently, basic features which are known for small-scale homogeneous isotropic turbulence, and in particular the well-known intermittency problem, have an important impact on the wind energy conversion process. We report on basic research results concerning the small-scale intermittent properties of atmospheric flows and their impact on the wind energy conversion process. The analysis of wind data shows strongly intermittent statistics of wind fluctuations. To achieve numerical modeling a data-driven superposition model is proposed. For the experimental reproduction and adjustment of intermittent flows a so-called active grid setup is presented. Its ability is shown to generate reproducible properties of atmospheric flows on the smaller scales of the laboratory conditions of a wind tunnel. As an application example the response dynamics of different anemometer types are tested. To achieve a proper understanding of the impact of intermittent turbulent inflow properties on wind turbines we present methods of numerical and stochastic modeling, and compare the results to measurement data. As a summarizing result we find that atmospheric turbulence imposes its intermittent features on the complete wind energy conversion process. Intermittent turbulence features are not only present in atmospheric wind, but are also dominant in the loads on the turbine, i.e. rotor torque and thrust, and in the electrical power output signal. We conclude that profound knowledge of turbulent statistics and the application of suitable numerical as well as experimental methods are necessary to grasp these unique features (...)Comment: Accepted by the Journal of Turbulence on May 17, 201

    Discovering study-specific gene regulatory networks

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Microarrays are commonly used in biology because of their ability to simultaneously measure thousands of genes under different conditions. Due to their structure, typically containing a high amount of variables but far fewer samples, scalable network analysis techniques are often employed. In particular, consensus approaches have been recently used that combine multiple microarray studies in order to find networks that are more robust. The purpose of this paper, however, is to combine multiple microarray studies to automatically identify subnetworks that are distinctive to specific experimental conditions rather than common to them all. To better understand key regulatory mechanisms and how they change under different conditions, we derive unique networks from multiple independent networks built using glasso which goes beyond standard correlations. This involves calculating cluster prediction accuracies to detect the most predictive genes for a specific set of conditions. We differentiate between accuracies calculated using cross-validation within a selected cluster of studies (the intra prediction accuracy) and those calculated on a set of independent studies belonging to different study clusters (inter prediction accuracy). Finally, we compare our method's results to related state-of-the art techniques. We explore how the proposed pipeline performs on both synthetic data and real data (wheat and Fusarium). Our results show that subnetworks can be identified reliably that are specific to subsets of studies and that these networks reflect key mechanisms that are fundamental to the experimental conditions in each of those subsets

    First observations of confined fast ions in MAST Upgrade with an upgraded neutron camera

    Get PDF
    Spherical tokamaks are key to the successful design of operating scenarios of future fusion reactors in the areas of divertor physics, neutral beam current drive and fast ion physics. MAST Upgrade, which has successfully concluded its first experimental campaign, was specifically designed to address the role of the radial gradient of the fast ion distribution in driving the excitation of magneto-hydrodynamic (MHD) instabilities, such as toroidal Alfvén eigenmodes, fish-bones and long-lived mode, thanks to its two tangential neutral beam injection systems, one on the equatorial plane and one that is vertically shifted 65 cm above the equatorial plane. To study the fast ion dynamics in the presence of such instabilities, as well as of sawteeth and neo-classical tearing modes, several fast ion diagnostics were upgraded and new ones added. Among them, the MAST prototype neutron camera (NC) has been upgraded to six, equatorial sight-lines. The first observations of the confined fast ion behavior with the upgraded NC in a wide range of plasma scenarios characterized by on-axis and/or off-axis heating and different MHD instabilities are presented here. The observations presented in this study confirm previous results on MAST but with a higher level of detail and highlight new physics observations unique to the MAST Upgrade. The results presented here confirm the improved performance of the NC Upgrade, which thus becomes one of the key elements, in combination with the rich set of fast ion diagnostics available on the MAST Upgrade, for a more constrained modeling of the fast ion dynamics in fusion reactor relevant scenarios
    corecore