786 research outputs found
Mapping rail wear transitions
This paper outlines work carried out to produce maps of
rail material wear coefficients taken from laboratory
tests run on twin disc and pin-on-disc machines as well
as those derived from measurements taken in the field.
Wear transitions are identified using the maps and
defined in terms of slip and contact pressure. Wear
regimes are related to expected wheel/rail contact
conditions and contact points (rail head/wheel tread and
rail gauge/wheel flange). Surface and sub-surface
morphologies are discussed and comparisons are made
between field and laboratory data
Mapping rail wear regimes and transitions
This paper outlines work carried out to produce maps of rail material wear coefficients taken
from laboratory tests run on twin disc and pin-on-disc machines as well as those derived from
measurements taken in the field. Wear regimes and transitions are identified using the maps
and defined in terms of slip and contact pressure. Wear regimes are related to expected
wheel/rail contact conditions and contact points (rail head/wheel tread and rail gauge/wheel
flange). Surface morphologies are discussed and comparisons are made between field and
laboratory data
Wheel material wear mechanisms and transitions
In order to develop more durable wheel materials to cope with the new specifications being imposed on wheel wear, a greater understanding is needed of the wear mechanisms and transitions occurring in wheel steels, particularly at higher load and slip conditions. In this work wear assessment of wheel materials is discussed as well as wear rates, regimes and transitions. Twin disc wear testing, used extensively for studying wear of wheel and rail materials, has indicated that three wear regimes exist for wheel materials; mild, severe and catastrophic. These have been classified in terms of wear rate and features. Wear rates are seen to increase steadily initially, then level off, before increasingly rapidly as the severity of the contact conditions is increased. Analysis of the contact conditions in terms of friction and slip has indicated that the levelling off of the wear rate observed at the first wear transition is caused by the change from partial slip to full slip conditions at the disc interface. Temperature calculations for the contact showed that the large increase in wear rates seen at the second wear transition may result from a thermally induced reduction in yield strength and other material properties. Wear maps have been produced using the test results to study how individual contact parameters such as load and sliding speed influence wear rates and transitions. The maps are also correlated to expected wheel/rail contact conditions. This improved understanding of wheel wear mechanisms and transitions and will help in the aim of eventually attaining a wear modelling methodology reliant on material properties rather than wear constants derived from testing
Experimental characterization of wheel-rail contact patch evolution
The contact area and pressure distribution in a wheel/rail contact is essential information required in any fatigue or wear calculations to determine design life, re-grinding, and maintenance schedules. As wheel or rail wear or surface damage takes place the contact patch size and shape will change. This leads to a redistribution of the contact stresses. The aim of this work was to use ultrasound to nondestructively quantify the stress distribution in new, worn, and damaged wheel-rail contacts. The response of a wheel/rail interface to an ultrasonic wave can be modeled as a spring. If the contact pressure is high the interface is very stiff, with few air gaps, and allows the transmission of an ultrasonic sound wave. If the pressure is low, interfacial stiffness is lower and almost all the ultrasound is reflected. A quasistatic spring model was used to determine maps of contact stiffness from wheel/rail ultrasonic reflection data. Pressure was then determined using a parallel calibration experiment. Three different contacts were investigated; those resulting from unused, worn, and sand damaged wheel and rail specimens. Measured contact pressure distributions are compared to those determined using elastic analytical and numerical elastic-plastic solutions. Unused as-machined contact surfaces had similar contact areas to predicted elastic Hertzian solutions. However, within the contact patch, the numerical models better reproduced the stress distribution, as they incorporated real surface roughness effects. The worn surfaces were smoother and more conformal, resulting in a larger contact patch and lower contact stress. Sand damaged surfaces were extremely rough and resulted in highly fragmented contact regions and high local contact stress. Copyright © 2006 by ASME
Odin observations of ammonia in the Sgr A +50 km/s Cloud and Circumnuclear Disk
Context. The Odin satellite is now into its sixteenth year of operation, much
surpassing its design life of two years. One of the sources which Odin has
observed in great detail is the Sgr A Complex in the centre of the Milky Way.
Aims. To study the presence of NH3 in the Galactic Centre and spiral arms.
Methods. Recently, Odin has made complementary observations of the 572 GHz NH3
line towards the Sgr A +50 km/s Cloud and Circumnuclear Disk (CND). Results.
Significant NH3 emission has been observed in both the +50 km/s Cloud and the
CND. Clear NH3 absorption has also been detected in many of the spiral arm
features along the line of sight from the Sun to the core of our Galaxy.
Conclusions. The very large velocity width (80 km/s) of the NH3 emission
associated with the shock region in the southwestern part of the CND may
suggest a formation/desorption scenario similar to that of gas-phase H2O in
shocks/outflows.Comment: 5 pages, 3 figures, 3 table
Prevalence of footrot in Swedish slaughter lambs
<p>Abstract</p> <p>Background</p> <p>Footrot is a world-wide contagious disease in sheep and goats. It is an infection of the epidermis of the interdigital skin, and the germinal layers of the horn tissue of the feet. The first case of footrot in Swedish sheep was diagnosed in 2004. Due to difficulties in distinguishing benign footrot from early cases of virulent footrot and because there is no possibility for virulence testing of strains of <it>Dichelobacter nodosus </it>in Sweden, the diagnosis is based of the presence or absence of clinical signs of footrot in sheep flocks. Ever since the first diagnosed case the Swedish Animal Health Service has worked intensively to stop the spread of infection and control the disease at flock level. However, to continue this work effectively it is important to have knowledge about the distribution of the disease both nationally and regionally. Therefore, the aims of this study were to estimate the prevalence of footrot in Swedish lambs at abattoirs and to assess the geographical distribution of the disease.</p> <p>Methods</p> <p>A prevalence study on footrot in Swedish lambs was performed by visual examination of 2000 feet from 500 lambs submitted from six slaughter houses. Each foot was scored according to a 0 to 5 scoring system, where feet with score ≥2 were defined as having footrot. Moreover, samples from feet with footrot were examined for <it>Dichelobacter nodosus </it>by culture and PCR.</p> <p>Results</p> <p>The prevalence of footrot at the individual sheep level was 5.8%, and <it>Dichelobacter nodosus </it>was found by culture and PCR in 83% and 97% of the samples from feet with footrot, respectively. Some minor differences in geographical distribution of footrot were found in this study.</p> <p>Conclusions</p> <p>In a national context, the findings indicate that footrot is fairly common in Swedish slaughter lambs, and should be regarded seriously.</p
A spectral line survey of Orion KL in the bands 486-492 and 541-577 GHz with the Odin satellite I. The observational data
Spectral line surveys are useful since they allow identification of new
molecules and new lines in uniformly calibrated data sets. Nonetheless, large
portions of the sub-millimetre spectral regime remain unexplored due to severe
absorptions by H2O and O2 in the terrestrial atmosphere. The purpose of the
measurements presented here is to cover wavelength regions at and around 0.55
mm -- regions largely unobservable from the ground. Using the Odin
astronomy/aeronomy satellite, we performed the first spectral survey of the
Orion KL molecular cloud core in the bands 486--492 and 541--576 GHz with
rather uniform sensitivity (22--25 mK baseline noise). Odin's 1.1 m size
telescope, equipped with four cryo-cooled tuneable mixers connected to broad
band spectrometers, was used in a satellite position-switching mode. Two mixers
simultaneously observed different 1.1 GHz bands using frequency steps of 0.5
GHz (25 hours each). An on-source integration time of 20 hours was achieved for
most bands. The entire campaign consumed ~1100 orbits, each containing one hour
of serviceable astro-observation. We identified 280 spectral lines from 38
known interstellar molecules (including isotopologues) having intensities in
the range 80 to 0.05 K. An additional 64 weak lines remain unidentified. Apart
from the ground state rotational 1(1,0)--1(0,1) transitions of ortho-H2O, H218O
and H217O, the high energy 6(2,4)--7(1,7) line of para-H2O and the
HDO(2,0,2--1,1,1) line have been observed, as well as the 1,0--0,1 lines from
NH3 and its rare isotopologue 15NH3. We suggest assignments for some
unidentified features, notably the new interstellar molecules ND and SH-.
Severe blends have been detected in the line wings of the H218O, H217O and 13CO
lines changing the true linewidths of the outflow emission.Comment: 21 pages, 10 figures, 7 tables, accepeted for publication in
Astronomy and Astrophysics 30 August 200
Water and ammonia abundances in S140 with the Odin satellite
We have used the Odin satellite to obtain strip maps of the ground-state
rotational transitions of ortho-water and ortho-ammonia, as well as CO(5-4) and
13CO(5-4) across the PDR, and H218O in the central position. A physi-chemical
inhomogeneous PDR model was used to compute the temperature and abundance
distributions for water, ammonia and CO. A multi-zone escape probability method
then calculated the level populations and intensity distributions. These
results are compared to a homogeneous model computed with an enhanced version
of the RADEX code. H2O, NH3 and 13CO show emission from an extended PDR with a
narrow line width of ~3 kms. Like CO, the water line profile is dominated by
outflow emission, however, mainly in the red wing. The PDR model suggests that
the water emission mainly arises from the surfaces of optically thick, high
density clumps with n(H2)>10^6 cm^-3 and a clump water abundance, with respect
to H2, of 5x10^-8. The mean water abundance in the PDR is 5x10^-9, and between
~2x10^-8 -- 2x10^-7 in the outflow derived from a simple two-level
approximation. Ammonia is also observed in the extended clumpy PDR, likely from
the same high density and warm clumps as water. The average ammonia abundance
is about the same as for water: 4x10^-9 and 8x10^-9 given by the PDR model and
RADEX, respectively. The similarity of water and ammonia PDR emission is also
seen in the almost identical line profiles observed close to the bright rim.
Around the central position, ammonia also shows some outflow emission although
weaker than water in the red wing. Predictions of the H2O(110-101) and
(111-000) antenna temperatures across the PDR are estimated with our PDR model
for the forthcoming observations with the Herschel Space Observatory.Comment: 13 pages, 14 figures, 10 tables. Accepted for publication in
Astronomy & Astrophysics 14 November 200
- …